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Abstract

The ability to enforce usage policies attached to data in a fine grained manner requires that the sys-
tem be able to trace and control the flow of information withinit. This paper presents the design and
implementation of such an information flow control system asa Java Virtual Machine, called Trishul.
In particular we describe a novel way to address the hard problem of tracing implicit information flow,
which had not been resolved by previous systems. We argue that the security benefits offered by Trishul
are substantial enough to counter-weigh the performance overhead of the system as shown by our exper-
iments.

1 Introduction

As computers continue to permeate all aspects of life, ensuring the confidentiality of medical, legal, finan-
cial, business, and other data is becoming increasingly important. Individualdata items may have very
specific redistribution policies, such as a medical record intended “only for doctors at this hospital whose
patient is John Smith” or “only for employees of the marketing department.” Current systems do not do
a very good job enforcing detailed and data-specific information flow policies. In this paper we describe
the design and implementation of an architecture that can be used to enforce data-specific information flow
policies that are more fine grained than what is currently possible.

As an example, consider an e-commerce site that uses an external credit card processing component.
The e-commerce application asks the customer for a credit card number andthen passes it to the credit card
processor over a secure, encrypted channel. However, it wants a guarantee that the credit card processor
will not leak it to unauthorized third parties. On the other hand, the credit card processor may be allowed to
forward other credit card details (such as name of the card holder) to third party business interests. This is
the essence of the problem we are tackling: passing information over to a semi-trusted system and remotely
enforcing what can be done with the information.

Our general approach to solving the problem of data-specific policy enforcement at untrusted applica-
tions on remote machines is via the implementation of virtual environments whose taskit is to track the
flow of the data within the remote system. Such a mechanism, often termedinformation flow control(IFC),
relies on the ability of the underlying layer to track and control the flow of information without knowing
any of the details of what the (untrusted) application is doing or how it works. In this paper we report the
implementation of such an IFC system within a virtual machine environment, namedTrishul.

Obviously, in order to make this design secure, the initiating application needs away to verify that the
virtual environment running on the remote machine is the one it expects and trusts.Remote attestation[1, 2]
provides a mechanism to enforce this. We will assume that such a mechanism isavailable and will not
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discuss it further. The contribution of this paper is the design and operation of such a virtual environment
and the way in which it can control information flow in an application-independent way.

The rest of the paper is organised as follows. We introduce previous works done in formalising the
general concepts behind information flow control and discuss in detail thetheoretical aspects of such systems
in Section 2. In Section 3 we explain the two main approaches commonly used in building IFC systems -
language-based static analysis and the less often studied dynamic informationflow tracing and control at
run-time. We also discuss previous works in using these approaches to build IFC systems and point out their
shortcomings.

Our IFC system Trishul is implemented within the context of Java Virtual Machine (JVM). We explain
this design choice and introduce the Java architecture in Section 4. In Section5 we present the details of
Trishul’s implementation, which was built on the open source Kaffe [3] JVM.In Section 6 we present the
results of performance tests conducted using Trishul in order to gauge the overhead added into the system
in exchange for enhanced security. In Section 7 we discuss some issuesrelated to the performance, security
and usability of the system.

We conclude in Section 8 by summarizing the key points of our work and point towards future work.

2 Information Flow Control

Over the years, access control models like discretionary access control and mandatory access control [4],
role-based access control [5] and usage control models [6] have been developed in order to provide a frame-
work for handling the requirement of restricted access to and restricted usage of system resources (like CPU,
memory, file system). However, existing work in this area dealt mainly with the theoretical aspects of the
models or confine themselves to high level access control implementations thatevaluateaccess policies. By
itself they can’t be used to enforce policies associated with application data.

IFC, by providing a framework to regulate the flow of information within various components of a
system, provide a mechanism to implement the actual enforcement mechanism to power the higher level
policy evaluation engines.

2.1 Motivating Examples

The work on Trishul was motivated by couple of example applications whereenforcement of policies asso-
ciated with the data input into the system is essential in preserving the security of the data.

The previously mentioned e-commerce example is one such scenario. The e-commerce application can
hardly demand that the credit card processor hand over its source code for a security audit. Yet the e-
commerce application wants to make sure that confidential data is treated according to its security policy.
How can it do this?

Mobile agent systems [7] provide a another scenario. The agents carrywith them data whose integrity
and confidentiality is important to the security of the system. External nodes that execute the agent code
and handle agent data should not be able to use them in a manner that will subvert their usage policy.
For example, a piece of data may have an associated policy that its contents should not be stored locally.
Enforcing this via a blanket policy of ‘no write access to file system’ for the whole agent will result in a
policy that is too coarse and would very likely prevent the agent from functioning correctly.

Yet another example is that of application that tries to leak user information. Consider an email applica-
tion which, due to a bug or malicious intent, reads the user’s personal files and sends it over to rogue party.
Simple access control policies would not be helpful as the user may also like tolegitimately email these files
to parties he choose. A monitoring system that has an efficient IFC mechanism would be able to trace the
usage of these sensitive data, preventing misuse while allowing legitimate use.



2.2 Information Flow Model

Denning formally defined a control flow modelFM [8] as

FM = 〈N, P, SC,⊕,→〉

N denotes a set of storage objects that receive and store data.P is a set of processes that move infor-
mation around in the system.SC is defined as set of security classes that each object inN is bound to. This
security class also includesL, the lower bound of the security classes which is attached to objects inN by
default.⊕ is the binary operator that defines the security class of the result of a binary operation performed
on any pair of operand classes.→ denotes the legalcan-flowof information from one security class of object
to another. Without losing generality and specifically in the context of this paper, the objects that formN
can be considered as program variables, and in certain instances, as seen later on, blocks of program code.

Many programs compute values using one or more variables as operands and store these values into
another variable. For example, in the pseudo-codey = x, when the value ofx is transferred toy, information
is said toflow from object (variable)x to object (variable)y and the flow is denoted asx ⇒ y.

boolean x
boolean y
i f ( x == t rue )

y = t rue
e l s e

y = f a l s e

Listing 1: Implicit flow pseudo-code

Flows due to codes likey = x are termedexplicit flowsbecause the the flow takes place due to the
explicit transfer of a value fromx to y. On the other hand, consider the code shown in Listing 1. Even
though there is no direct transfer of value fromx to y, once the code is executed,y would have obtained
the value ofx. We say that in this case,x ⇒ y was animplicit flow. We discuss the approaches taken by
existing information control system to track implicit flows in details in Section 3.4.

3 Managing Information Flow

The conceptual idea behind information flow control and system security based on the model is not new.
First explored in the early 70s, it has been researched and used in various forms over the years. In general,
two different approaches have been explored - compile time and run time.

3.1 Compile-time Systems

In thecompile-timeapproach, programs are written in specially designed programming languages in which
special annotations are used by the programmers to specify security labelsand constraints to the objects in
the program. At compile time, the compiler uses these extra labels to ensure the security of the flow control
model. These compile-time checks can thus be viewed as an augmentation of typechecking. Continuing
with the notations used by Denning [8],x can flowto y, denoted byx → y, iff information in x is allowed
to flow into y. In the context of information flow, the necessary and sufficient condition for a system to be
considered secure is thatx ⇒ y is allowed iffx → y.

When information flow occurs between more than two objects, the compiler has toverify that each of the
flows is allowed. For example, in the code segmentz = x + y, it is clear that information flows from bothx
andy to z. A compiler would, in theory, need to verifyx → z andy → z. In general, ifb = f(a1, a2....an),



eachai → b has to be verified. However for the sake of simplicity, the compiler computesA = a1 ⊕a2...an

and then verifiesA → b. Readers are referred to work by Denning and Denning [9] for a detailed analysis of
the model, including various code structures, assignments, control and data structures and procedure calls.

Compile-time information flow analysis was used by Denning [8, 9] as a mechanism aimed at adding
a certification mechanism into the compiler analysis phase in order to prove the security of the system. In
JFlow [10], an example of a modern compile-time system, the Java [11] programming language is extended
in order to let the programmer specify security labels to the objects. At compile time, a special compiler
uses the labels to verify the information security model of the system. Once this has been verified, the code
is translated to normal Java code and a normal Java compiler transforms it intobytecode.

3.2 Run-time Solutions

While the compile-time approach assigns labels to each object and uses them to make sure information flow
occurs only if the security labels allow it to, the run-time solutions take a different approach. They use the
concept of labels as extra ‘properties’ of the object and track their propagation as the objects are involved in
computation. Instead of verifyingx ⊕ y → z at compile time, the system propagates the security class of
the information source into the information receiving object. Thus, the assignmentz = x ⊕ y occurs.

These assignments however only track the flow of information as it moves through the system. The
actual enforcement of security policies is carried out by another part of the system, hereby termed the ‘policy
engine’. It intercepts all information flows from program objects (such as variables) to output channels, and
allows the flow to proceed only if they are not disallowed by the relevant policies. Examples of such output
channels are files, shared memories, network writes etc. Whenever an object x tries to write information
into an output channelO, the policy engine checks whetherx → O is allowed by the specified policy and
if not, the flow is disallowed. The implied assumption is that the policies refer to (orcan be translated to)
restrictions based on the the usage of these restricted channels.

Fenton’s Data Mark Machine [12] is one of the earliest systems that used the concept of run-time in-
formation flow control to enforce policies. However the machine was an abstract concept and no imple-
mentation was ever attempted. The security mechanism proposed by Gat and Saal [13] works in a similar
fashion. The system however relies heavily on specialized hardware architecture to trace information flow.
The RIFLE architecture [14] is a more recent system that implements run-time information flow security
with the aim of providing policy decision choice to the end user. They use a combination of program binary
translation and a hardware architecture modified specifically to aid informationflow tracking. Again, the
use of the modified hardware architecture prevents it from being used ona normal machine.

Beres and Dalton [15] use the DynamoRIO [16] dynamic instruction stream modification framework
to dynamically rewrite machine code in order to support dynamic label binding. The underlying concept
behind the architecture of our systemTrishul resembles that of this system with an important practical
difference: instead of using a separate code modification framework, wemake use of interpreted nature of
Java’s bytecode instructions to perform dynamic tracing as explained lateron. TaintBochs [17] uses a similar
idea to track flow of information within a system but with the aim of tracking how ‘tainted’ data flows in
the system. With a similar objective in mind Haldar et al. [18] use bytecode instrumentation to track tainted
data received from the network. They also attempt to extend this idea by using bytecode instrumentation to
perform mandatory access control on Java objects, in order to enforce security policies [19]. However, the
level of granularity that is considered, objects, is too coarse grained to be useful in many applications. For
instance, they provide as an example a class method that tries to leak a secretfile into a public file [19]. This
is prevented by tagging the whole class instance as ‘secret’ as soon as thesecret file is read and denying
access to public channels once this tag has been set. The coarse nature of this tagging however prevents the
class method from accessing any public channels even if the operation it wishes to perform is not on the data
read from the secret file.



3.3 Comparison

Recent years have seen considerable interest in research of the compile-time approach towards information
flow. A recent survey [20] references around 140 papers on language based security. One of the reasons
for favoring the compile-time approach is the belief that these systems leak onlyone bit of information per
program execution and hence are inherently more secure than run time systems [10]. However, it has been
shown by Vacharajani et al. in [14] that termination channel attacks, usually considered the Achilles’ heel
of run-time systems, can be engineered to leak the same amount of information incompile-time systems as
in run-time ones.

Compile-time systems suffer from the important limitation that the policies are bound tothe code in
a static manner. There is no easy way to handle scenarios where different policies need to be attached to
different runs of the application using different input data. In a similar way, these system perform policy-
code binding early in the life-cycle, preventing their use in application scenarios where the policy is bound,
not to the application but instead, to the data. An example where such limitations occur is that of an email
system in which each incoming email has its own distribution policy, none of whichare constant across
application runs or known at compile time. Compile-time systems fail here.

Compile-time systems are in general more efficient than run-time in that the verification is done only
once, at compile time. At run-time, these systems can thus confine themselves to checking the proof of the
verification. However, run-time systems performs flow control on each run of the code, slowing the system.
The gain in speed enjoyed by compile-time systems however is in exchange forthe limitation on the kind of
policies that can be enforced. These include policies that depend on the dynamic run-time properties of the
system and the user. For example, a policy that states ‘This application should not be allowed to send more
than 1 MB of data across the network in one day’ cannot be verified at compile-time, since the enforcement
requires the maintenance of a state that tracks the network usage of the application at run-time. Similarly,
compile-time systems cannot ensure the enforcement of system-wide obligations [22] that may be stated in
the usage policy, unless they can be expressed at compile-time in a static, immutable manner.

Compile-time systems are written in special languages; hence most existing applications, written in
C, C++, or Java, will have to be rewritten in these languages before they can be verified. Yet another
shortcoming is that the verification process is performed by the programmer and the user has to trust the
programmer. Although proof carrying codes [21] can be used to enhance the trust, practical use of the
concept hasn’t reached a critical mass.

Inline reference monitors (IRMs) [23] use an hybrid reference monitorwith post-compile time (but
not strictly run-time) code rewriting approach to the problem of high-level policy enforcement. However,
Schneider has shown that information flow, not being asafety propertyis not enforceable by the use of
reference monitors [24]. Hence, because they are unable to trace information flow within the system, in
order to enforce a fine grained policy like ‘do not allow data accessed from /secret to be sent over the
network,’ IRMs have to resort to enforcing a coarser policy like ‘do not allow data accessed from anywhere
within the local file system to be sent over the network.’

3.4 Handling Implicit Flows

From the earlier discussion in Section 2.2, it should be clear that implicit information flows are harder to
track and verify than the explicit ones. Over the years, several approaches have been suggested that provide
varying degree of security against information leaks from implicit flows whiletrying to build a system that
is not overly restrictive.

The Data Mark Machine can be modified to handle implicit information flow by adding a new security
class for the program counterp. Whenever a control branch occurs,p is set to the⊕ of the class of objects
that form the arguments of the branch decision. Within the branch block,p is added to every control flow.



Thus in the example illustrated in Listing 1, when theif statement is executed,p is set tox andy is set to
L⊕ p = x. Thus the implicit information flow fromx to y is captured by the security labely and the process
x → p → y.

boolean b = f a l s e
boolean c = f a l s e
i f ( ! a )

c = t rue
i f ( ! c )

b = t rue

Listing 2: Implicit flow pseudo-code 2

However a different implicit flow example, first expressed by Fenton [25] and shown here in Listing 2,
shows that the Data Mark system is still not fully secure. Whena is true, the firstif fails soc remainsL.
The nextif succeeds andb = p = c = L. Thus, at the end of the run,b attains the value ofa but b 6= a. The
same is true whena is false. The underlying problem is that even though the first branch is not followed,
the very fact that it is not followed contains information, which is then leakedusing the nextif .

A trivial (and ineffective) approach to this problem is to ignore it, as doneby Beres and Dalton [15].
Fenton [26] and Gat and Saal [13] proposed a solution which works byrestoring the value and class of
objects changed within the branch structure, back to thevalueand security class it had before entering the
branch. This however would not work in practice since existing application codes routinely use similar
control structures without paying any consideration to information flow leaks.

Aries [27] takes a more drastic approach wherein awrite to an object within a branch structure is disal-
lowed if its security class is less than or equal to the security class of the program counter,p. Thus, in the
previous example ifa is false, when the program tries to write toc, the compile time system prevents it
from doing so, sincec’s security classL <= p (= a). This approach works only if the security classes have
an explicit notion of high and low. Furthermore,p may not be known during compile-time.

Denning [28] proposes a more secure approach whereby the compiler inserts an extra instruction at the
end of theif(!a){c = true} code block to updatec to p (= a). Thus, irrespective of whether the branch was
followed or not, the class of object acted upon within the branch is updated toreflect the information flow.
Our implementation takes inspiration from this approach, but rather than perform the required class update
at compile time we perform them at Java method invocation as explained later in Section 5.2.

4 IFC and Java architecture

Having discussed previous approaches and their limitations, it is now time to explain our proposal.
Run-time information flow control systems can be implemented at several different abstract levels within

a computer architecture. Implementing it at the application level, ties down the system to a specific applica-
tion. Implementing it within the operating system, as in HiStar [29], allows the operating system to enforce
various kinds of access restrictions by controlling information flow betweenkernel objects, like threads,
address space and devices. However, such an implementation is not able toenforce application level usage
policies. For example, if an email application is allowed read access to mail files and write access to network
devices (the normal case), it becomes very difficult to enforce a selective ‘do not forward’ policy for some
emails but not others.

Another aspect to be considered is that the process of tracing informationflow at run-time involves
having to dynamically trace access to stacks, registers, program counterand memory region. Current CPU
architectures do not, however, provide this flexibility, forcing run-time systems proposed to date, such as
RIFLE [14] and dynamic label binding [15], to rely on the use of ‘enhanced’ hardware.



With these design considerations in mind, application virtual machines stands out as an obvious mid-
dleware platform choice for implementing Trishul. Originally introduced as a means to provide an abstract
machine architecture for application developers to write their code without bothering about the underlying
machine architecture, application virtual machines abstract away the machinearchitecture, preventing pro-
grams from directly accessing the platform registers and physical memory.Furthermore, the interpreted
nature of the architecture makes it particularly suitable for implementing run-time flow analysis. As the
Java virtual machine (JVM) is one of the most widely deployed virtual machineenvironment around, it was
chosen for implementingTrishul.

4.1 Java Architecture

The Java architecture comprises two distinct environments: compile-time and run-time. In the compile-
time environment, programs written in Java programming language are compiled intomachine architecture
independentbytecodesusing the Java compiler and stored in what are calledclass files. At run-time, an
abstract computer called Java Virtual Machine (JVM) loads these class files and executes them in a platform-
dependent manner.

The simplest implementation of the JVM is aninterpreter, which executes each bytecode instruction
one at a time. While interpreters are easy to implement, they take longer to executethe programs thanjust-
in-time compilationimplementations, which compile portions of the bytecode into native machine code.
This approach however is much more difficult to implement and could potentially introduce security holes
in the flow tracing mechanism. Due to these complications and the resource constrains of our developmental
effort, we chose to implement Trishul in the interpreted mode by modifying the Kaffe interpreter engine to
keep track of the information flow.

The Java architecture provides a level of built-in policy-based security.The early implementation used
the concept ofsandboxingto create two levels of security environment. This was refined later on (JDK 1.2
and above) to provide more levels of security environments whose securitypermission could be specified
with a finer granularity [31]. Cryptographic signatures are used to bind the application code to the origin
of the code and policies are defined based on the principals (origin) of thecode. However, the supported
policies cannot be expressed with enough granularity to be of use in IFC-based enforcement. For example,
users could trust applications signed by the principal ofsun.comand give it permission to read local files
and create connections to all.sun.comdomains. However, as this policy could only be applied at the level of
the overall application, it is not possible to enforce application-semantic level policies such as ‘do not allow
the application to write data originating from /secret to any network connection’.

4.2 JVM Internals

The JVM specifications [30] define the functionality that every virtual machine implementation should sup-
port, while leaving design choices to the individual developers. This has helped develop several JVM imple-
mentations. We modified the open source Kaffe [3] JVM to implement Trishul. Inthis section we describe
the internal design of the JVM that is relevant to the implementation of Trishul. A detailed treatment of
the full design aspects of JVM is beyond the scope of this paper and interested readers are referred to other
resources [32].

An interpreter JVM has three distinct parts (1) the class loader which is responsible for loading classes
and interfaces and performing associated security checks; (2) the execution engine which executes each
bytecode instruction; and (3) the runtime data area. The runtime data area consists of a method area, heap,
Java stacks, native method stacks and a program counter (pc) register. Each Java application is run inside
a separate virtual machine. The method area and the heap are shared across all threads running in a JVM.
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Figure 1: Internal layout of a JVM

The method area holds per-class structures including method data, method code and constant pool, while
the heap holds all the objects dynamically instantiated by the VM.

The Java architecture consists of two kinds of methods – native and Java.Java methods are written in
the Java programming language, compiled into bytecode, stored in classes, and interpreted by the JVM.
Native methods are typically written in C or C++ and compiled into machine code andstored as architecture
specific system libraries. They usually provide direct access to host resources. Java code can call native
methods directly from the JVM using the Java Native Interface (JNI). Direct access to these native methods
however renders the calling code platform specific, so their use is discouraged. Instead, a Java distribution
is packaged with a set of Java classes that abstract away the native method calls.

Every thread started in the JVM is given a separate Java stack that is usedto maintain the state of all
Java methods called by the thread, like the local variables, intermediate calculations and parameters used for
its invocation. The state of the native methods invoked by the thread is saved using separate native method
stack, registers as well as platform specific memory areas. If the thread isexecuting a Java method, the
program counter (pc) register indicates the next instruction to be executed. This internal layout of the JVM
is represented in Figure 1.

Each Java stack is made up of frames, with each frame containing the state of aseparate Java method
invocation. In interpreter mode, Kaffe JVM uses the variables array to hold the local variable values and the
operand stack to hold intermediate operation results.

Throughout the rest of the paper we use‘taint’ to represent that a variable has a specific security class
value and that, an operation that involves a tainted variable/slotpropagatesthe taint.

The VM executes the instructions by moving data from the local variable array to the operand stack or
vice versa and performing computation on these values in the operand stackusing it also to store intermediate
values. In order for the virtual machine to track the flow of information as theinstructions are executed, every
slot on the variable array as well as the operand stack has to be extendedto store the label of the information
that is stored in the slot. The next section describes the actual implementation details of Trishul.

5 Implementing Trishul

In this section we describe in detail our implementation of Trishul, a run-time IFC JVM system based on
version 1.1.7 of the Kaffe JVM.

5.1 Stack, Heap and Object Taints

As explained in the previous section, in order to implement taint labels on the local variables and temporary
values, the stack structure has to be extended. In Kaffe each stack is implemented as a set of slots. Trishul
extends the C struct that implements the slot to hold the taint information, as shownin Appendix A.1.

As in the original slot implementation, the memory allocation is handled automatically by Kaffe’s stack
management functions. However, taint propagation has to be instrumented separately since Kaffe copies
members of the stack slots rather than the structures as a whole. The taint propagation mechanism was
added by extending the macros used by Kaffe to implement the Java instructionset. Appendix A.1 shows



the modification to one such macro, moveint(), used by several instruction sets like ILOAD to move integer
value between variables and operand stack.

In addition to the stack, Java object members and array elements can also be tainted and hence they too
need to be extended to hold the taint labels. In Trishul, these taint labels are stored on the heap, in one of
two ways. Static Java object member taint labels are stored in the structure used by the virtual machine
internally to handle the field and its values. Non-static object members and array elements1 are stored in
shadow memory allocated when the object (or array) is allocated. This memoryis released by a modified
garbage-collection function that provides a reference to the shadow memory to the garbage collector, which
in turn uses it to deallocate the memory automatically.

A pointer to the shadow memory, called membertaint, is added to the structure that represents a basic
Java object. The structure representing an object field was then extended to include an index into the shadow
memory. This identifies the location in the shadow memory where the taint for that field is stored. In the case
of static members, the index is reused to store the actual taint value. When an object member is written, the
taint object store macro is invoked. This macro updates the membertaint array for the field being written.
Likewise, when a member is read, the taintobject load macro is invoked to read the values. Appendix A.2
lists the relevant code changes.

5.2 Branch Context Taints

As discussed in Section 3.4, implicit information flows are difficult to trace. In order to handle them in a
correct manner, we propose the concept of abranch context taint, which extends the idea of associating a
security class with the pc. It aims to first capture the implicit taint labels associated with a code branch, for
example acasein a switchor an if/else, by examining the variables that effect the conditional branch and
then passing this context taint into the branch.

Thus, for anif control flow instruction (CFI) like ‘if (a == 5) && (b == 6) ’ the context taintct is
computed asct = a ⊕ b. Please note here that while the examples in the paper are presented using pseudo-
codes and Java codes, Trishul actually works at Java bytecode level.

In order to capture the implicit information flow that is available even when a branch is not taken, we
try to identify all variables that are modified within the branch blocks. To this end, a list of variables that
are modified in each block is calculated at class load time and stored with each basic block, as shown in the
rightmost column in Figure 2. When a conditional CFI, like a branch or goto, isexecuted, only one possible
path is taken. The variables that are modified in any of the other paths, but not in the current path (since they
are tainted by execution of the path anyway), are tainted with the context taintct using the following rule:

• If the branch is taken:object = ct of object ⊕ explicit flow in statement

• If the branch is not taken:object = object ⊕ ct of object

Let us consider an example using the pseudo-code in Listing 2. The analysis at load time computes the
ct at line 03 (ct 03) asa andct 05 = c. Assumea = false. Table 1 summarises the actions taken at
run-time by the IFC system.

We see that this approach correctly identifies implicit flow of information froma to b by successfully
computingb = a. A similar (correct) result is computed whena = true.

Trishul uses a two-stage process to handle context taints. In the first stage, when a method is invoked for
the first time, its control-flow graphs (CFGs) withbranch bitmapsare computed to detect context blocks. In
the second stage, these CFGs and branch bitmaps are summarised intocontext bitmaps. These processes are
explained in details below.

1After all an array is also an object.



Line number Is it a branch Is branch taken? Taint computation
03 yes yes none (since branch is taken)
04 no - c = L ⊕ ct 03 = a

05 yes no b = b ⊕ ct 05 = b ⊕ c = a

Table 1: Branch context taint rule example

5.2.1 Creating the CFGs

A CFG is created using a single forward pass over the method’s code with a node for each basic block. A
basic block is a sequence of instructions with a single entry-point (the firstinstruction) and a single point of
exit (the last instruction). A CFI always forms the last instruction of a basicblock. Directed edges represent
transitions between basic blocks, either caused by the normal flow of instructions or by a CFI.

Note that a basic block may have an outward edge leading to a specialexit block for the last instruction
in a method or one other block for a goto or block without CFI, or two other blocks for if-statements, or
any number of other blocks for switch instructions. CFIs that exit the current method (return and throw
instructions) are linked to theexitblock ensuring that all blocks (other than the exit block) will have at least
one outward edge.

To ensure that each basic block has a single point of entry, the CFI’s targets are checked. If the target
is before the current program counter (i.e. a backward branch) andit branches into the middle of a basic
block, the basic block is split so that the target instruction is the starting point ofits block. In the case of a
forward branch, a new basic block is created starting at the target instruction, which is initially empty. This
block is stored in a forward list, which is checked when a new basic block is created. Later when the basic
block that includes the target instruction (identified earlier in the forward branch) needs to be created, the
basic block from the forward list is used. If the target instruction is not thefirst instruction of the new basic
block, this block is split as required.

pub l i c s t a t i c vo id main ( S t r i n g a r g s [ ] )
{

boolean a = t rue ;
boolean b ;
i f ( a )
{

b = t rue ;
}
e l s e
{

b = f a l s e ;
}

}

Listing 3: Java code for CFG example

00 : i c o n s t 1
01 : i s t o r e 1
02 : i l o a d 1
03 : i f e q 11
06 : i c o n s t 1
07 : i s t o r e 2
08 : go to 13
11 : i c o n s t 0
12 : i s t o r e 2
13 : r e t u r n

Listing 4: Bytecode of Listing 3

5.2.2 Branch bitmaps

A branch bitmap is associated with each basic block. This contains a number ofbits for each conditional
CFI, one bit for each possible target of the CFI. In the case of an if-statement there are two bits: one
representing the case when the branch is taken, and one representing the case when the branch is not taken.
A switch instruction has one bit per case, and possibly one bit for the default case.
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Figure 2: Control-flow graph created from Listing 4

The branch bitmaps are shown in Figure 2 in the center-left field in each node. The CFG in Figure 2 is
created from the bytecode in Listing 4, which in turn was compiled from the Java code in Listing 3. In this
case, the bitmap consists of two bits, both referring to the if-statement in the topmost basic block. The fact
that these bits represent the if-statement at the end of this basic block is indicated by the rectangular brackets
that enclose these bits.

Initially the branch bitmaps are initialized to zero. Bits that represent a branchtarget are initialized
to one in the basic block containing that instruction. In other words, the bitmap inbasic block<11 12>
(indicating the program counters in the top-left field) is initialized to 10, because block<0 5> branches into
this block. Likewise, block<6 10> is initialized to 01. Block<13 13> is initialized to 001, as the earlier
branch instruction does not branch directly into it.

Once all bitmaps have been initialized, they are continuously updated until each bitmap satisfies the
condition that each bit that is set in any block that precedes the block in question is also set in the current
bitmap. In other words, each bit that is set in a block flows into every block following it.

Once this is done, the bits controlled by a specific CFI can be in one of two states: all bits have the same
value, or they have different values. In the first case, each possiblepath starting at the CFI includes the basic
block, or no path includes the basic block. Either way, the execution of the basic block is not controlled
by the CFI. When the bits have different values, only some of the paths starting at the CFI reach the basic
block, therefore the execution of the block is controlled by the CFI.

5.2.3 Context bitmaps

Context bitmaps summarize the information stored in branch bitmaps. The bitmap contains a single bit per
CFI. The bit is set if the basic block is controlled by the CFI represented bythat bit. Context bitmaps are
shown in Figure 2 in the bottom-left fields. Again, rectangular brackets areused to show which bit represents
the CFI in a basic block. The basic blocks<6 10> and<11 12> are controlled by the ifeq instruction in
block<0 5>, while block<13 13> is not.

The context bitmaps are used at run-time to detect which context taints must beenabled. They are
currently stored in a list, sorted on the program counter of the first instruction in the block. When a CFI is
executed, or the program counter runs out of the current block, the new context bitmap is retrieved from the
list.

1The figure shows a value that is attained at the end of the analysis.



5.2.4 Context taints

When a conditional CFI is executed, the combined taint of all values used in the instructions expression(s)
is stored in the context taint array. This array contains an entry per conditional CFI, and thus has as many
entries as the context bitmap has bits. When a new basic block is entered, its context bitmap indicates
which conditional CFIs control the execution of the block. As the context taint includes the taint of any
expression that controls execution of the current basic block, the taints stored in the context taint array must
be combined for all conditional CFIs whose bits are set in the context bitmap.

5.3 Tainter Class

When policy-tagged data is used by an application that runs within Trishul, it istainted with a security label.
In order to implement this, Trishul adds hooks in order to intercept calls from the application to core Java
methods that import data from input channels into the system. This is done by theTainterclass.

When the application tries to perform an output channel operation using thetainted data, like writing
to the local file system or the network, Trishul again intercepts these calls to ensure that the application is
allowed to perform the operations as per the policy associated with the data. If the policy forbids this usage,
an exception is thrown. The list of method invocations that triggers the taint and the exceptions are specified
via a policy file that is passed to the JVM as a commandline argument.

6 Performance

The ability to track and control information flow within the system comes at the expense of performance
overhead. This overhead is introduced at two distinct points. In order toimplement an effective policy based
IFC system, the Tainter class has to examine every access to possible input channels in order to decide if the
data is to be tainted, as per the policy. Similar hooks are present to examine access to output channels too.
This overhead can vary drastically based on the granularity of the policy specified. For example, if a policy
states that any file read from the path ‘/secret’ has to be tainted, the hooks needs to examine each invocation
of the ‘FileInputStream’ class constructor to check for the path name. However, if the policy states that any
file with the string “Secret Information” in its content has to be tainted, the hooks need to examine each
invocation of methods that can read data from the file, like the ‘DataInputStream.readLine’ function, which
could be called and intercepted as many times as there are lines in the file.

Once the hook introduces the taint, the actual taint propagation mechanism introduces the other over-
head. This can be attributed to, among other things, the analysis of the CFGs,the calculation of the context
taints and the creation and maintenance of the taint properties of the objects.

We performed some benchmark measurements to evaluate the amount of overhead introduced by Tr-
ishul. The experiments were conducted on an Intel Pentium M processor 1.60GHz machine with 512MB
RAM, running Ubuntu 6.10 with a 2.6.17-10-generic SMP Linux kernel. As mentioned before, Trishul was
implemented on version 1.1.7 of the Kaffe JVM, and was compared to the same1.

IBM’s jMocha microbenchmark suite [33] provides a set of performance tests designed to measure
the performance of operating system services of JVM implementations. Table2 summarises the result of
the ‘AllObjectConstruct (large assign)’ benchmark which records the time taken to construct objects and
initialise all local variables. The three values are for varying number of initialisations. The test reflects the
overhead introduced mainly by the creation of the CFGs and the creation andinitialisation of the taint labels
to their default values. Though an overhead of 29% seems big, since this benchmark measures only the

1Compiled using config: ./configure –disable-gtk-peer –with-staticlib –with-staticbin –with-staticvm –with-engine=intrp –
disable-vmdebug CFLAGS=-O3



1 2 3
Kaffe 3.53 6.09 8.95

Trishul 4.56 7.89 11.55
% overhead 29.18 29.56 29.05

Table 2: jMocha benchmark, AllObjectConstruct (large assign) inµs

256 512 1K 2K 4K 8K 16K 32K
Kaffe 47.57 74.86 113.68 135.77 147.95 170.39 190.08 193.37

Trishul 44.29 71.78 109.56 130.9 145.42 168.46 189.22 192.7
% overhead 6.89 4.11 3.62 3.59 1.71 1.13 0.45 0.35

Table 3: jMocha benchmark, FileWriteBW in MB/s for various block sizes

initialisation time, which forms a very small part of the full runtime, we feel that theobserved overhead is
acceptable.

Table 3 compares the bandwidth (in MB/sec) of writing to a file while Table 4 compares the bandwidth
attained in reading from a file, both of 16M size, for both Kaffe and Trishul JVMs. Note that in both cases,
as with the AllObjectConstruct benchmark, no taints were introduced into the Trishul system.

256 512 1K 2K 4K 8K 16K 32K
Kaffe 68.33 116.48 154.5 208.19 273.99 343.24 386.52 419.01

Trishul 65.05 111.77 148.25 201.06 271.05 340.48 386.38 418.6
% overhead 4.8 4.04 4.05 3.42 1.07 0.8 0.04 0.1

Table 4: jMocha benchmark, FileReadBW in MB/s for various block sizes

The jMocha file operation benchmark results show that the maximum overheadintroduced by Trishul is
7% which reduces to a very reasonable value of 0.4% for large block sizes. This variation can be explained
by the observation that when the files are read/written in smaller block sizes, the loop that performs the
read/write, is executed more times and each time Trishul has to calculate the new branch taint at each CFI
instance. These, being expensive operations, introduce more overhead into the system.

Next we considered a program that opens a file, reads the content oneline at a time and writes the entire
content into another file1. We introduced taint into Trishul by setting the policy ‘taint data obtained from
any file with the stringsecret in the file’s path’. The time taken for the application to work on files of various
sizes was measured. Each line of the file contained 32 characters. Table 5summarises the time taken (in
ms), averaged over five runs.

The results show that compared to Kaffe, Trishul introduces an overhead of around 25% in execution
time. While this is not a negligible overhead, we feel that this penalty is a reasonable price to pay for the
additional security offered by the flow control and policy enforcement functionality we obtain in exchange.
Furthermore, we are confident that the overhead can be reduced by further optimisations.

Next the performance of Trishul and Kaffe when running a brute-force prime number generator was
compared. In such an application the time spent in propagating the taint label across stacks as well as that
spent in executing branch context related calculations overshadows thetime needed to create, initialise and
destroy taints. It provides one of the worst-case overhead scenariosin using Trishul and any similar IFC
system. The application goes through the first N integers to check if it is a primenumber or not. In Trishul,
we tainted the integer under consideration in two ways. In one case we associated a taint label with the

1The Java code is provided in Appendix



File size 128 KB 256 KB 512 KB 1024 KB 2048 KB
Kaffe 1962 3890 7714 15403 30668
Trishul 2450 4831 9627 19153 38186
Overhead % 24.8 24.2 24.7 24.3 24.5

Table 5: Time taken to read a file’s content and write it into another file

Number of integers 16384 32768 65536
Kaffe 3987 14148 52741
Trishul (no taint) 4835 (21.3) 17814 (25.9) 66402 (25.9)
Trishul (taint introduced once) 9548 (139.4) 35270 (149.2) 131457 (149.2)
Trishul (taint introduced individually) 9583 (140.3) 35363 (149.9) 132373 (150.9)

Table 6: Time in ms taken to check for prime numbers. Numbers in bracket is the %overhead.

variable used in the integer generation loop once, which is then propagatedas the variable is used within the
application. In the other case, we tainted each integer separately after it was generated. The performance of
these two scenarios were compared against a pure Kaffe implementation anda Trishul implementation with
no tainted data.

Table 6 summarises the execution time, in milliseconds and averaged over five execution runs, needed
in each case for different number of integers considered. The numbers in brackets indicate the percentage
overhead compared to the Kaffe’s performance.

As the results show, the computational overhead incurred by Trishul with no tainted data is much less
compared to that incurred when taints are introduced. The very high overhead reported is indicative of the
large amount of context taint related computations triggered by the tight loopsin the code.

7 Discussion

Performance optimisation

Trishul is still in the early stages of development and some of the performance numbers obtained in the
previous section can probably be improved by further optimisations. Overhead incurred during the creation
of the CFGs and similar action performed at application class load time cannot beeliminated as they have
performed once in the class’s life-cycle irrespective of the taint of the data under consideration. However, the
CFGs of trusted core Java libraries used in Kaffe and Trishul, like GNU Classpath [34], could be calculated
in advance and stored in a secure manner and be re-used each time they are needed.

Reducing the overhead due to context taint calculations could potentially improve performance further.
For example, an analysis of the branch blocks could reveal that the objects used in context taint calculations
are never written into and hence their security class never change within thebranch block. This information
can then be used to skip the repeated context taint calculations performed when backward branch loops are
encountered.

Policies

The Trishul architecture proposed here does not use a specific built-insecurity policy model, allowing it
to be used as a policy-model independent, generic IFC system. Differentpolicy models can thus be used
as long as the policies can be translated to the level that Trishul can operateon. We are in the process
of developing an example policy model and associated translator. We are also working on implementing
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5 = 00010001 

6 = 00010010 network: no
.......

display: no

policyindex

Figure 3: Policy table

a secure data source policy-tagging system along the lines of file and network labeling implementation of
multilevel security systems [35].

Whatever be the policy model, its representation within Trishul influences the efficiency and security of
the IFC system. Consider the code shown in Listing 5:

S t r i n g a = ‘ ‘No d i s p l a y ’ ’
S t r i n g b = ‘ ‘No network ’ ’
S t r i n g c = a + b ;

Listing 5: Policy bitmap pseudocode

If a has been assigned the security policy “do not display” andb was assigned “do not send over the
network,” c formed by the concatenation ofa andb should inherit both the security policies and have an
effective policy “do not display and do not send over the network” (c = a ⊕ b). In order for an IFC system
to support such compound policies, the policies have to be represented internally in an efficient format. We
plan to represent policies in Trishul by bitmaps of a configurable size. Forexample, the labels could be
implemented as a n * k bitmap lookup to a table that stores all the policies used by the virtual machine
instance. Thus, when the VM starts, it would initialise a table to hold all the policiesneeded by the system.
Every time some policy-bound data is introduced into the system, the system creates a new entry in this
table. The object that stores the data is then given a label that points to the index of the corresponding policy
in the table. The policy table is constructed within the VM memory and is not availableto the application
for reading or modifying.

For the example in Listing 5, when the JVM initialisesa and reads its policy, assuming that it is a new
policy, the JVM creates a new entry into the table as shown in Fig. 3 it creates anew entry in the table at
index 5.b is given a value 6. Using a 8-bit bit array in a 4x4 format, 5 can be expressed as ‘00010001’ and
6 as ‘00010010’. Thusc = a ⊕ b = 00010001 ⊕ 00010010 = 00010011.

Native methods

As mentioned earlier in Section 4.2, Java applications are able to invoke nativemethods directly using the
JNI. Once invoked, the native methods are no longer run within the JVM andcan, among other things, use
registers inside the native processor and allocate memory on native stacks. Hence there is no way for the IFC
system to track the information flow once these methods are invoked. In order to avoid this, applications
have to be prevented from passing tainted data as arguments to the native methods. Since native method
invocations are performed by the JVM, such selective disabling is possible.

8 Conclusions and Future Work

In this paper we described the design and implementation of Trishul, a JVM based information flow control
system. Using the concept of branch context taint, explained in the paper,Trishul is able to tackle the
problems associated with implicit information flow tracing.

Performance measurements using Trishul show that the system incurs limited overhead. Optimisation
needed to reduce this, some of which have been outlined in the paper, formpart of our future work. We also



plan to use Trishul as the basis for the development of an actual policy enforcement architecture that can
understand and enforce policies expressed at application semantic level.
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Appendix A Taint Implementation in Trishul

A.1 Stack and Heap Taints

t ypede f s t r u c t s l o t s{
union {

j i n t t i n t ;
jword tword ;
j l o n g t l o n g ;
j f l o a t t f l o a t ;
j d o u b l e t d o u b l e ;
void ∗ t a d d r ;
char∗ t s t r ;

} v ;

} s l o t s ;

Listing 6: Old slot struct

t ypede f s t r u c t s l o t s{
union {

j i n t t i n t ;
jword tword ;
j l o n g t l o n g ;
j f l o a t t f l o a t ;
j d o u b l e t d o u b l e ;
void ∗ t a d d r ;
char∗ t s t r ;

} v ;
t a i n t t t a i n t ; /∗ uns igned i n t∗ /

} s l o t s ;

Listing 7: Modified slot struct

# d e f i n e move in t ( t , f ) ( t ) [ 0 ] . v . t i n t = ( f ) [ 0 ] . v . t i n t /∗ o ld ∗ /
# d e f i n e move in t ( t , f ) ( t a i n t 1 ( t , f ) , ( t ) [ 0 ] . v . t i n t = ( f ) [ 0 ] . v . t i n t )
# d e f i n e t a i n t 1 ( t , f1 ) ( t ) [ 0 ] . t a i n t = ( f1 ) [ 0 ] . t a i n t

Listing 8: Example of a macro modification to support taint propagation

A.2 Object Taints

t ypede f s t r u c t H j a v a l a n g O b j e c t{
s t r u c t d i s p a t c h T a b l e∗ v t a b l e ;
s t r u c t i Lock ∗ l o ck ;

} H j a v a l a n g O b j e c t ;

Listing 9: Old object struct

t ypede f s t r u c t H j a v a l a n g O b j e c t{
s t r u c t d i s p a t c h T a b l e∗ v t a b l e ;
s t r u c t i Lock ∗ l o ck ;
t a i n t t ∗member ta i n t ;

} H j a v a l a n g O b j e c t ;

Listing 10: Modified object struct

t ypede f s t r u c t j f i e l d I D {
H j a v a l a n g C l a s s∗ c l a z z ;

} f i e l d s ;

Listing 11: Old object field

t ypede f s t r u c t j f i e l d I D {
H j a v a l a n g C l a s s∗ c l a z z ;
( . . . )
union
{

/∗ For s t a t i c f i e l d s∗ /
t a i n t t t a i n t ;
/∗ For o b j e c t f i e l d s∗ /
i n t t a i n t i n d e x ;

} t r i s h u l ;
} f i e l d s ;

Listing 12: Modified object field



# d e f i n e t a i n t o b j e c t s t o r e ( obj , f i e l d , f )
t a i n t A d d 3 ( FIELD TAINT ( ( ob j )−>v . t add r , f i e l d ) ,

o b j e c t T a i n t ( ob j ) , ( ob j )−> t a i n t , ( f )−> t a i n t )

Listing 13: Macro that updates membertaint array

Appendix B Performance measurement codes

B.1 Read from and write to file

package t r i s h u l . t e s t ;

import j a v a . i o .∗ ;

c l a s s Secre tRead
{

s t a t i c vo id main ( S t r i n g a r g s [ ] )
{

t r y
{

long s t a r t t i m e = System . c u r r e n t T i m e M i l l i s ( ) ;
F i l e I n p u t S t r e a m i n =new F i l e I n p u t S t r e a m ( a r g s [ 0 ] ) ;
Da ta Inpu tS t ream r e a d e r =new Data Inpu tS t ream ( i n ) ;
S t r i n g B u f f e r c o n t e n t s =new S t r i n g B u f f e r ( ) ;

whi le ( r e a d e r . a v a i l a b l e ( ) !=0 ){
S t r i n g s t r = r e a d e r . r eadL ine ( ) ;
c o n t e n t s . append ( s t r ) ;
c o n t e n t s . append ( System . g e t P r o p e r t y ( ” l i n e . s e p a r a t o r ”) ) ;

}

S t r i n g s = c o n t e n t s . t o S t r i n g ( ) ;
W r i t e r o u t p u t = n u l l ;
F i l e a F i l e = new F i l e ( ” b l ah . t x t ” ) ;
o u t p u t = new B u f f e r e d W r i t e r ( new F i l e W r i t e r ( a F i l e ) ) ;
o u t p u t . w r i t e ( c o n t e n t s . t o S t r i n g ( ) ) ;

long end t ime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . e r r . p r i n t l n ( ”Time t aken = ” + ( endt ime − s t a r t t i m e ) + ”ms” ) ;

}
catch ( Excep t i on e )
{

e . p r i n t S t a c k T r a c e ( ) ;
}

}
}



B.2 Prime Number Generator

package t r i s h u l . t e s t . t a i n t . a r i t h ;

import j a v a . i o .∗ ;

c l a s s Ar i thPr imeTimeTaken
{

p r i v a t e s t a t i c boolean i s P r i m e (long i )
{

f o r ( i n t t e s t = 2 ; t e s t < i ; t e s t ++)
{

i f ( i%t e s t == 0)
{

re turn f a l s e ;
}

}
re turn t rue ;

}

pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws IOExcept ion
{

i n t n l o o p s = 32∗1024;
i n t n p r imes = 0 ;

i n t j ;

long s t a r t t i m e = System . c u r r e n t T i m e M i l l i s ( ) ;

/ / j = t a i n t ( 0 ,0 x03 ) ; / / T a i n t once
j =0 ;

f o r ( ; j < n l o o p s ; j ++)
{

i n t i = j ;
/ / i n t i = t a i n t ( j , 0 x02 ) ; / / T a i n t eve r y va l ue

i f ( i s P r i m e ( i ) )
{

n p r imes ++;
}

}

long end t ime = System . c u r r e n t T i m e M i l l i s ( ) ;
System . ou t . p r i n t l n ( np r imes +” p r imes found i n ” +( endt ime − s t a r t t i m e )+ ”ms ” ) ;

}
}


