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Abstract

The ability to enforce usage policies attached to data ineagmined manner requires that the sys-
tem be able to trace and control the flow of information withinThis paper presents the design and
implementation of such an information flow control systemaakava Virtual Machine, called Trishul.
In particular we describe a novel way to address the hardgmobf tracing implicit information flow,
which had not been resolved by previous systems. We argtiththaecurity benefits offered by Trishul
are substantial enough to counter-weigh the performanedead of the system as shown by our exper-
iments.

1 Introduction

As computers continue to permeate all aspects of life, ensuring the cdidldgmf medical, legal, finan-
cial, business, and other data is becoming increasingly important. Individtalitems may have very
specific redistribution policies, such as a medical record intended “onigdctors at this hospital whose
patient is John Smith” or “only for employees of the marketing department.fe@usystems do not do
a very good job enforcing detailed and data-specific information flow pelidie this paper we describe
the design and implementation of an architecture that can be used to erditaiespecific information flow
policies that are more fine grained than what is currently possible.

As an example, consider an e-commerce site that uses an external ardditracessing component.
The e-commerce application asks the customer for a credit card numbgreginplasses it to the credit card
processor over a secure, encrypted channel. However, it wantarargee that the credit card processor
will not leak it to unauthorized third parties. On the other hand, the creditmacessor may be allowed to
forward other credit card details (such as name of the card holder) tbpaity business interests. This is
the essence of the problem we are tackling: passing information over moi-drested system and remotely
enforcing what can be done with the information.

Our general approach to solving the problem of data-specific poliayreshent at untrusted applica-
tions on remote machines is via the implementation of virtual environments whos# tss& track the
flow of the data within the remote system. Such a mechanism, often ténfioeahation flow contro(IFC),
relies on the ability of the underlying layer to track and control the flow ofrimfation without knowing
any of the details of what the (untrusted) application is doing or how it wdrkshis paper we report the
implementation of such an IFC system within a virtual machine environment, naristal.

Obviously, in order to make this design secure, the initiating application newdsg & verify that the
virtual environment running on the remote machine is the one it expects atsl Remote attestatiofi, 2]
provides a mechanism to enforce this. We will assume that such a mecharasailéble and will not



discuss it further. The contribution of this paper is the design and operattisuch a virtual environment
and the way in which it can control information flow in an application-independay.

The rest of the paper is organised as follows. We introduce previodssvamne in formalising the
general concepts behind information flow control and discuss in detaii¢ioeetical aspects of such systems
in Section 2. In Section 3 we explain the two main approaches commonly useddimpuFC systems -
language-based static analysis and the less often studied dynamic inforftatidracing and control at
run-time. We also discuss previous works in using these approachedttRilisystems and point out their
shortcomings.

Our IFC system Trishul is implemented within the context of Java Virtual MactlivM). We explain
this design choice and introduce the Java architecture in Section 4. In SBatierpresent the details of
Trishul's implementation, which was built on the open source Kaffe [3] JifivBection 6 we present the
results of performance tests conducted using Trishul in order to gaagevéinthead added into the system
in exchange for enhanced security. In Section 7 we discuss some iisfated to the performance, security
and usability of the system.

We conclude in Section 8 by summarizing the key points of our work and peuatrtts future work.

2 Information Flow Control

Over the years, access control models like discretionary accesslcamironandatory access control [4],
role-based access control [5] and usage control models [6] havedaveloped in order to provide a frame-
work for handling the requirement of restricted access to and restristapbwof system resources (like CPU,
memory, file system). However, existing work in this area dealt mainly with theetieal aspects of the
models or confine themselves to high level access control implementatioey#hadteaccess policies. By
itself they can’t be used to enforce policies associated with application data.

IFC, by providing a framework to regulate the flow of information within vasiaxomponents of a
system, provide a mechanism to implement the actual enforcement mechanismetotpe higher level
policy evaluation engines.

2.1 Motivating Examples

The work on Trishul was motivated by couple of example applications wérdigcement of policies asso-
ciated with the data input into the system is essential in preserving the seduhgydata.

The previously mentioned e-commerce example is one such scenario.cbnengerce application can
hardly demand that the credit card processor hand over its soureefaod security audit. Yet the e-
commerce application wants to make sure that confidential data is treatediagdorits security policy.
How can it do this?

Mobile agent systems [7] provide a another scenario. The agentsweidinrthem data whose integrity
and confidentiality is important to the security of the system. External nodesxbaute the agent code
and handle agent data should not be able to use them in a manner that waltsiieir usage policy.
For example, a piece of data may have an associated policy that its conteuls sbt be stored locally.
Enforcing this via a blanket policy of ‘no write access to file system’ for ol agent will result in a
policy that is too coarse and would very likely prevent the agent froratfaning correctly.

Yet another example is that of application that tries to leak user informatiamsi@sr an email applica-
tion which, due to a bug or malicious intent, reads the user’s personalfiifesemds it over to rogue party.
Simple access control policies would not be helpful as the user may also ldgitimately email these files
to parties he choose. A monitoring system that has an efficient IFC meohamsld be able to trace the
usage of these sensitive data, preventing misuse while allowing legitimate use.



2.2 Information Flow Model

Denning formally defined a control flow modgel)M [8] as
FM = (N,P,5C,®,—)

N denotes a set of storage objects that receive and store Hasaa set of processes that move infor-
mation around in the systenSC' is defined as set of security classes that each objé€tismbound to. This
security class also includds the lower bound of the security classes which is attached to objedfson
default. ¢ is the binary operator that defines the security class of the result of gy lmiparation performed
on any pair of operand classes. denotes the legalan-flowof information from one security class of object
to another. Without losing generality and specifically in the context of thigpaipe objects that fornV
can be considered as program variables, and in certain instancespdater on, blocks of program code.

Many programs compute values using one or more variables as operahdtoee these values into
another variable. For example, in the pseudo-gpdex, when the value af is transferred tg, information
is said toflow from object (variable) to object (variable) and the flow is denoted as=- y.

boolean x
boolean y
if (x == true)
y = true
else
y = false

Listing 1: Implicit flow pseudo-code

Flows due to codes likg = = are termedexplicit flowsbecause the the flow takes place due to the
explicit transfer of a value from to y. On the other hand, consider the code shown in Listing 1. Even
though there is no direct transfer of value framo g, once the code is executegiwould have obtained
the value ofz. We say that in this case, = y was animplicit flow. We discuss the approaches taken by
existing information control system to track implicit flows in details in Section 3.4.

3 Managing Information Flow

The conceptual idea behind information flow control and system secuwaitgcdoon the model is not new.
First explored in the early 70s, it has been researched and useddas/érms over the years. In general,
two different approaches have been explored - compile time and run time.

3.1 Compile-time Systems

In thecompile-timeapproach, programs are written in specially designed programming laegiragrhich
special annotations are used by the programmers to specify securitydabetenstraints to the objects in
the program. At compile time, the compiler uses these extra labels to ensureuhigyssf the flow control
model. These compile-time checks can thus be viewed as an augmentation ohégiéng. Continuing
with the notations used by Denning [8],can flowto y, denoted by: — y, iff information in z is allowed
to flow into y. In the context of information flow, the necessary and sufficient comdftoa system to be
considered secure is that=- y is allowed iffz — y.

When information flow occurs between more than two objects, the compiler kasftpthat each of the
flows is allowed. For example, in the code segmest = + y, it is clear that information flows from both
andy to z. A compiler would, in theory, need to verify — z andy — z. In general, ib = f(a1,as....a,),



eacha; — b has to be verified. However for the sake of simplicity, the compiler complitesa; @ as...a,
and then verifiegl — b. Readers are referred to work by Denning and Denning [9] for dldétanalysis of
the model, including various code structures, assignments, control gndtdactures and procedure calls.

Compile-time information flow analysis was used by Denning [8, 9] as a mechamised at adding
a certification mechanism into the compiler analysis phase in order to proveduetg of the system. In
JFlow [10], an example of a modern compile-time system, the Java [11] pnogireg language is extended
in order to let the programmer specify security labels to the objects. At compile dirsgecial compiler
uses the labels to verify the information security model of the system. Onceathizaen verified, the code
is translated to normal Java code and a normal Java compiler transformdiyiatmde.

3.2 Run-time Solutions

While the compile-time approach assigns labels to each object and uses theketsureinformation flow
occurs only if the security labels allow it to, the run-time solutions take a diffaapproach. They use the
concept of labels as extra ‘properties’ of the object and track thejrgmation as the objects are involved in
computation. Instead of verifying & y — z at compile time, the system propagates the security class of
the information source into the information receiving object. Thus, the assigy = z @ y occurs.

These assignments however only track the flow of information as it movesghrthe system. The
actual enforcement of security policies is carried out by another pmt @ystem, hereby termed the ‘policy
engine’. It intercepts all information flows from program objects (suchaiables) to output channels, and
allows the flow to proceed only if they are not disallowed by the relevantipsli€xamples of such output
channels are files, shared memories, network writes etc. Whenevejea olries to write information
into an output chann&D, the policy engine checks whether— O is allowed by the specified policy and
if not, the flow is disallowed. The implied assumption is that the policies refer togiobe translated to)
restrictions based on the the usage of these restricted channels.

Fenton’'s Data Mark Machine [12] is one of the earliest systems that usetbtitept of run-time in-
formation flow control to enforce policies. However the machine was atraavsoncept and no imple-
mentation was ever attempted. The security mechanism proposed by Gaaridi3 works in a similar
fashion. The system however relies heavily on specialized hardwelri#eature to trace information flow.
The RIFLE architecture [14] is a more recent system that implements run-tioreniation flow security
with the aim of providing policy decision choice to the end user. They usenbic@tion of program binary
translation and a hardware architecture modified specifically to aid informiidwrtracking. Again, the
use of the modified hardware architecture prevents it from being usadchormal machine.

Beres and Dalton [15] use the DynamoRIO [16] dynamic instruction streadification framework
to dynamically rewrite machine code in order to support dynamic label bindihg. uhderlying concept
behind the architecture of our systefrishul resembles that of this system with an important practical
difference: instead of using a separate code modification frameworkjake use of interpreted nature of
Java’s bytecode instructions to perform dynamic tracing as explainesdrat@aintBochs [17] uses a similar
idea to track flow of information within a system but with the aim of tracking hownttad’ data flows in
the system. With a similar objective in mind Haldar et al. [18] use bytecode institatien to track tainted
data received from the network. They also attempt to extend this idea hy mgiecode instrumentation to
perform mandatory access control on Java objects, in order to erdenuirity policies [19]. However, the
level of granularity that is considered, objects, is too coarse graineel tisdful in many applications. For
instance, they provide as an example a class method that tries to leak dikeierteta public file [19]. This
is prevented by tagging the whole class instance as ‘secret’ as soon sectbefile is read and denying
access to public channels once this tag has been set. The coarse httisreagging however prevents the
class method from accessing any public channels even if the operatiohésatsperform is not on the data
read from the secret file.



3.3 Comparison

Recent years have seen considerable interest in research of thikectme approach towards information
flow. A recent survey [20] references around 140 papers orubagey based security. One of the reasons
for favoring the compile-time approach is the belief that these systems leakiallyit of information per
program execution and hence are inherently more secure than run titamsy40]. However, it has been
shown by Vacharajani et al. in [14] that termination channel attacksllystonsidered the Achilles’ heel
of run-time systems, can be engineered to leak the same amount of informatmmyile-time systems as
in run-time ones.

Compile-time systems suffer from the important limitation that the policies are boutit toode in
a static manner. There is no easy way to handle scenarios where diffet@mes need to be attached to
different runs of the application using different input data. In a similay, waese system perform policy-
code binding early in the life-cycle, preventing their use in application sanahere the policy is bound,
not to the application but instead, to the data. An example where such limitationsisd¢hat of an email
system in which each incoming email has its own distribution policy, none of wdrielconstant across
application runs or known at compile time. Compile-time systems fail here.

Compile-time systems are in general more efficient than run-time in that the ataifids done only
once, at compile time. At run-time, these systems can thus confine themselhesking the proof of the
verification. However, run-time systems performs flow control on eaglofthe code, slowing the system.
The gain in speed enjoyed by compile-time systems however is in excharthe fonitation on the kind of
policies that can be enforced. These include policies that depend ogrthmit run-time properties of the
system and the user. For example, a policy that states ‘This applicatiold staie allowed to send more
than 1 MB of data across the network in one day’ cannot be verifiednapibe-time, since the enforcement
requires the maintenance of a state that tracks the network usage of ticatagpat run-time. Similarly,
compile-time systems cannot ensure the enforcement of system-wide obkg@@pnhat may be stated in
the usage policy, unless they can be expressed at compile-time in a static, inennudainer.

Compile-time systems are written in special languages; hence most existingatippc written in
C, C++, or Java, will have to be rewritten in these languages before tireype verified. Yet another
shortcoming is that the verification process is performed by the progranmdetha user has to trust the
programmer. Although proof carrying codes [21] can be used to eehdre trust, practical use of the
concept hasn't reached a critical mass.

Inline reference monitors (IRMs) [23] use an hybrid reference monifitn post-compile time (but
not strictly run-time) code rewriting approach to the problem of high-leeditp enforcement. However,
Schneider has shown that information flow, not beingaéety propertyis not enforceable by the use of
reference monitors [24]. Hence, because they are unable to traceation flow within the system, in
order to enforce a fine grained policy like ‘do not allow data accessmd fsecret to be sent over the
network, IRMs have to resort to enforcing a coarser policy like ‘dbaltow data accessed from anywhere
within the local file system to be sent over the network.’

3.4 Handling Implicit Flows

From the earlier discussion in Section 2.2, it should be clear that implicit intawmé#ows are harder to
track and verify than the explicit ones. Over the years, several appes have been suggested that provide
varying degree of security against information leaks from implicit flows winyig to build a system that
is not overly restrictive.

The Data Mark Machine can be modified to handle implicit information flow by apdinew security
class for the program countgr Whenever a control branch occupss set to thep of the class of objects
that form the arguments of the branch decision. Within the branch bioiskadded to every control flow.



Thus in the example illustrated in Listing 1, when tifestatement is executeg,is set tox andy is set to
L @ p = z. Thus the implicit information flow fronx to y is captured by the security labghnd the process
L—=p—Y.

false
false

boolean b
boolean ¢
if (la)

c = true
if (lc)

b = true

Listing 2: Implicit flow pseudo-code 2

However a different implicit flow example, first expressed by Fentoh 28l shown here in Listing 2,
shows that the Data Mark system is still not fully secure. Whétrue, the firsti f fails soc remainsL.
The nexti f succeeds anbl= p = ¢ = L. Thus, at the end of the rubattains the value of butb # a. The
same is true whea is false. The underlying problem is that even though the first branch is not feliipw
the very fact that it is not followed contains information, which is then lealsdg the nexif.

A trivial (and ineffective) approach to this problem is to ignore it, as dop@&eres and Dalton [15].
Fenton [26] and Gat and Saal [13] proposed a solution which worke$tpring the value and class of
objects changed within the branch structure, back tovétieeand security class it had before entering the
branch. This however would not work in practice since existing applicatimtes routinely use similar
control structures without paying any consideration to information flowdeak

Aries [27] takes a more drastic approach whereiwriée to an object within a branch structure is disal-
lowed if its security class is less than or equal to the security class of theapnagpunterp. Thus, in the
previous example if. is false, when the program tries to write tg the compile time system prevents it
from doing so, since’s security clasg. <= p (= a). This approach works only if the security classes have
an explicit notion of high and low. Furthermogemay not be known during compile-time.

Denning [28] proposes a more secure approach whereby the comp#etsian extra instruction at the
end of thei f(!a){c = true} code block to updateto p (= a). Thus, irrespective of whether the branch was
followed or not, the class of object acted upon within the branch is updatedléat the information flow.
Our implementation takes inspiration from this approach, but rather thaorpetiie required class update
at compile time we perform them at Java method invocation as explained latestiorSe. 2.

4 |FC and Java architecture

Having discussed previous approaches and their limitations, it is now time lairegpr proposal.

Run-time information flow control systems can be implemented at severaktiffabstract levels within
a computer architecture. Implementing it at the application level, ties down ttensys a specific applica-
tion. Implementing it within the operating system, as in HiStar [29], allows the tipgrgystem to enforce
various kinds of access restrictions by controlling information flow betwesnel objects, like threads,
address space and devices. However, such an implementation is not ebfertee application level usage
policies. For example, if an email application is allowed read access to mailridlesrite access to network
devices (the normal case), it becomes very difficult to enforce a sedédth not forward’ policy for some
emails but not others.

Another aspect to be considered is that the process of tracing infornfetierat run-time involves
having to dynamically trace access to stacks, registers, program canatenemory region. Current CPU
architectures do not, however, provide this flexibility, forcing run-timegewys proposed to date, such as
RIFLE [14] and dynamic label binding [15], to rely on the use of ‘entehitardware.



With these design considerations in mind, application virtual machines stahds an obvious mid-
dleware platform choice for implementing Trishul. Originally introduced as ansi&aprovide an abstract
machine architecture for application developers to write their code withabhebog about the underlying
machine architecture, application virtual machines abstract away the machhigecture, preventing pro-
grams from directly accessing the platform registers and physical merkoyhermore, the interpreted
nature of the architecture makes it particularly suitable for implementing run-tomedhalysis. As the
Java virtual machine (JVM) is one of the most widely deployed virtual maarimgonment around, it was
chosen for implementingrishul.

4.1 Java Architecture

The Java architecture comprises two distinct environments: compile-time artthrel In the compile-
time environment, programs written in Java programming language are compiledantone architecture
independenbytecodesising the Java compiler and stored in what are catlads files At run-time, an
abstract computer called Java Virtual Machine (JVM) loads these clasafiittexecutes them in a platform-
dependent manner.

The simplest implementation of the JVM is amerpreter, which executes each bytecode instruction
one at a time. While interpreters are easy to implement, they take longer to ettecptegrams thajust-
in-time compilationimplementations, which compile portions of the bytecode into native machine code.
This approach however is much more difficult to implement and could potenti&ttydimce security holes
in the flow tracing mechanism. Due to these complications and the resourdegmsf our developmental
effort, we chose to implement Trishul in the interpreted mode by modifying tiife Kaerpreter engine to
keep track of the information flow.

The Java architecture provides a level of built-in policy-based secditity.early implementation used
the concept ofandboxingo create two levels of security environment. This was refined later on (JPK 1
and above) to provide more levels of security environments whose separityission could be specified
with a finer granularity [31]. Cryptographic signatures are used to biadfiplication code to the origin
of the code and policies are defined based on the principals (origin) abttee However, the supported
policies cannot be expressed with enough granularity to be of use ibh#8€d enforcement. For example,
users could trust applications signed by the principawi.comand give it permission to read local files
and create connections to alin.condomains. However, as this policy could only be applied at the level of
the overall application, it is not possible to enforce application-semanticgelieies such as ‘do not allow
the application to write data originating from /secret to any network connéction

4.2 JVM Internals

The JVM specifications [30] define the functionality that every virtual nreecimplementation should sup-
port, while leaving design choices to the individual developers. This élaeti develop several JIVM imple-
mentations. We modified the open source Kaffe [3] JVM to implement Trishuhisrnsection we describe
the internal design of the JVM that is relevant to the implementation of Trishuletiléd treatment of
the full design aspects of JVM is beyond the scope of this paper andstedneeaders are referred to other
resources [32].

An interpreter JVM has three distinct parts (1) the class loader whichpsmnsgble for loading classes
and interfaces and performing associated security checks; (2) toatexeengine which executes each
bytecode instruction; and (3) the runtime data area. The runtime data asats®f a method area, heap,
Java stacks, native method stacks and a program counter (pc) reBistér Java application is run inside
a separate virtual machine. The method area and the heap are shasadicthreads running in a JVM.
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Figure 1: Internal layout of a JVM

The method area holds per-class structures including method data, mettodrab constant pool, while
the heap holds all the objects dynamically instantiated by the VM.

The Java architecture consists of two kinds of methods — native and Jaxeamethods are written in
the Java programming language, compiled into bytecode, stored in clasdestexpreted by the JVM.
Native methods are typically written in C or C++ and compiled into machine codstaret! as architecture
specific system libraries. They usually provide direct access to hestirees. Java code can call native
methods directly from the JVM using the Java Native Interface (JNI).dDaecess to these native methods
however renders the calling code platform specific, so their use is desged. Instead, a Java distribution
is packaged with a set of Java classes that abstract away the nativalrogliso

Every thread started in the JVM is given a separate Java stack that isousedntain the state of all
Java methods called by the thread, like the local variables, intermediate Galtsiknd parameters used for
its invocation. The state of the native methods invoked by the thread is sawvefseparate native method
stack, registers as well as platform specific memory areas. If the threa@dsiting a Java method, the
program counter (pc) register indicates the next instruction to be exkclités internal layout of the JVM
is represented in Figure 1.

Each Java stack is made up of frames, with each frame containing the stasepdrate Java method
invocation. In interpreter mode, Kaffe JVM uses the variables arrayltbthe local variable values and the
operand stack to hold intermediate operation results.

Throughout the rest of the paper we uisent’ to represent that a variable has a specific security class
value and that, an operation that involves a tainted variablgsdptagateghe taint.

The VM executes the instructions by moving data from the local variablg &oréhe operand stack or
vice versa and performing computation on these values in the operandisiaglt also to store intermediate
values. In order for the virtual machine to track the flow of information agtteuctions are executed, every
slot on the variable array as well as the operand stack has to be exteraierk the label of the information
that is stored in the slot. The next section describes the actual implementaads deTrishul.

5 Implementing Trishul

In this section we describe in detail our implementation of Trishul, a run-time VAZ system based on
version 1.1.7 of the Kaffe JVM.

5.1 Stack, Heap and Object Taints

As explained in the previous section, in order to implement taint labels on the/kréables and temporary
values, the stack structure has to be extended. In Kaffe each stack isnemézl as a set of slots. Trishul
extends the C struct that implements the slot to hold the taint information, as shéwpendix A.1.

As in the original slot implementation, the memory allocation is handled automaticallafig’&stack
management functions. However, taint propagation has to be instrumeapadtely since Kaffe copies
members of the stack slots rather than the structures as a whole. The taiagation mechanism was
added by extending the macros used by Kaffe to implement the Java instrsetioAppendix A.1 shows



the modification to one such macro, maw(), used by several instruction sets like ILOAD to move integer
value between variables and operand stack.

In addition to the stack, Java object members and array elements can alsudskdad hence they too
need to be extended to hold the taint labels. In Trishul, these taint labelserd sn the heap, in one of
two ways. Static Java object member taint labels are stored in the structaréywsee virtual machine
internally to handle the field and its values. Non-static object members anydederaents' are stored in
shadow memory allocated when the object (or array) is allocated. This meésalgased by a modified
garbage-collection function that provides a reference to the shadow méwmrthe garbage collector, which
in turn uses it to deallocate the memory automatically.

A pointer to the shadow memory, called memi&int, is added to the structure that represents a basic
Java object. The structure representing an object field was then edtieridelude an index into the shadow
memory. This identifies the location in the shadow memory where the taint forelwhidistored. In the case
of static members, the index is reused to store the actual taint value. Whéjeahraember is written, the
taint objectstore macro is invoked. This macro updates the mertdiat array for the field being written.
Likewise, when a member is read, the taifijectload macro is invoked to read the values. Appendix A.2
lists the relevant code changes.

5.2 Branch Context Taints

As discussed in Section 3.4, implicit information flows are difficult to trace. rttento handle them in a
correct manner, we propose the concept bfanch context taintwhich extends the idea of associating a
security class with the pc. It aims to first capture the implicit taint labels assdaiatie a code branch, for
example acasein a switchor anif/elsg by examining the variables that effect the conditional branch and
then passing this context taint into the branch.

Thus, for anif control flow instruction (CFl) like if (a == 5) && (b == 6) ’ the context taintct is
computed agt = a & b. Please note here that while the examples in the paper are presentedsesidg-p
codes and Java codes, Trishul actually works at Java bytecode level.

In order to capture the implicit information flow that is available even when adbris not taken, we
try to identify all variables that are modified within the branch blocks. To thi; arist of variables that
are modified in each block is calculated at class load time and stored with esclblogk, as shown in the
rightmost column in Figure 2. When a conditional CFl, like a branch or goxéasuted, only one possible
path is taken. The variables that are modified in any of the other pathsjthatthe current path (since they
are tainted by execution of the path anyway), are tainted with the contexttaising the following rule:

e If the branch is takernobject = ct_of object & explicit_flow_in_statement

e If the branch is not takerubject = object & ct_of _object

Let us consider an example using the pseudo-code in Listing 2. The sralysad time computes the
ct at line 03 ¢t_03) asa andct_05 = ¢. Assumea = false. Table 1 summarises the actions taken at
run-time by the IFC system.

We see that this approach correctly identifies implicit flow of information froto b by successfully
computingb = a. A similar (correct) result is computed when= true.

Trishul uses a two-stage process to handle context taints. In the fget staen a method is invoked for
the first time, its control-flow graphs (CFGs) withanch bitmapsre computed to detect context blocks. In
the second stage, these CFGs and branch bitmaps are summarissohteid bitmapsThese processes are
explained in details below.

LAfter all an array is also an object.



Line number| Is it a branch| Is branch taken? Taint computation

03 yes yes none (since branch is taken)
04 no - c=LPct03=a

05 yes no b=bDct05=bDc=a

Table 1: Branch context taint rule example

5.2.1 Creating the CFGs

A CFG is created using a single forward pass over the method’s code witteafar each basic block. A
basic block is a sequence of instructions with a single entry-point (thénfétstiction) and a single point of
exit (the last instruction). A CFl always forms the last instruction of a bialsick. Directed edges represent
transitions between basic blocks, either caused by the normal flow ofdtistrsi or by a CFI.

Note that a basic block may have an outward edge leading to a spritiallock for the last instruction
in a method or one other block for a goto or block without CFl, or two othecKsidor if-statements, or
any number of other blocks for switch instructions. CFls that exit theeotinmethod (return and throw
instructions) are linked to thexitblock ensuring that all blocks (other than the exit block) will have at least
one outward edge.

To ensure that each basic block has a single point of entry, the CKiistsaare checked. If the target
is before the current program counter (i.e. a backward branchijt &manches into the middle of a basic
block, the basic block is split so that the target instruction is the starting poits lofock. In the case of a
forward branch, a new basic block is created starting at the targetatistruwhich is initially empty. This
block is stored in a forward list, which is checked when a new basic blodle&ed. Later when the basic
block that includes the target instruction (identified earlier in the forwaathdir) needs to be created, the
basic block from the forward list is used. If the target instruction is nofiteeinstruction of the new basic
block, this block is split as required.

public static void main(String args]|[])

{
boolean a = true;
boolean b; 00: iconstl
if (a) 01: istorel
{ 02: iload.1
b = true; 03: ifeq 11
} 06: iconstl
else 07: istore.2
{ 08: goto 13
b = false; 11: iconstO
} 12: istore2
} 13: return

Listing 3: Java code for CFG example Listing 4: Bytecode of Listing 3

5.2.2 Branch bitmaps

A branch bitmap is associated with each basic block. This contains a numbis &r each conditional
CFl, one bit for each possible target of the CFI. In the case of antésent there are two bits: one
representing the case when the branch is taken, and one represeatiagéhwvhen the branch is not taken.
A switch instruction has one bit per case, and possibly one bit for thelltetse.
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Figure 2: Control-flow graph created from Listing 4

The branch bitmaps are shown in Figure 2 in the center-left field in eaah Adee CFG in Figure 2 is
created from the bytecode in Listing 4, which in turn was compiled from tha daste in Listing 3. In this
case, the bitmap consists of two bits, both referring to the if-statement in the sopaic block. The fact
that these bits represent the if-statement at the end of this basic block etéwliy the rectangular brackets
that enclose these bits.

Initially the branch bitmaps are initialized to zero. Bits that represent a briamgbt are initialized
to one in the basic block containing that instruction. In other words, the bitmbpsit block<11 12>
(indicating the program counters in the top-left field) is initialized to 10, bee#&lock<0 5> branches into
this block. Likewise, block<6 10> is initialized to 01. Block<13 13> is initialized to 0G, as the earlier
branch instruction does not branch directly into it.

Once all bitmaps have been initialized, they are continuously updated urtiilbéi@eap satisfies the
condition that each bit that is set in any block that precedes the block stigues also set in the current
bitmap. In other words, each bit that is set in a block flows into every blolbéwing it.

Once this is done, the bits controlled by a specific CFI can be in one of twas&tbits have the same
value, or they have different values. In the first case, each pogsitiiestarting at the CFl includes the basic
block, or no path includes the basic block. Either way, the execution ofdhie block is not controlled
by the CFIl. When the bits have different values, only some of the pathigtat the CFl reach the basic
block, therefore the execution of the block is controlled by the CFI.

5.2.3 Context bitmaps

Context bitmaps summarize the information stored in branch bitmaps. The bitminsoa single bit per
CFI. The bit is set if the basic block is controlled by the CFI representdthdtybit. Context bitmaps are
shown in Figure 2 in the bottom-left fields. Again, rectangular bracketssee to show which bit represents
the CFl in a basic block. The basic block$ 10> and<11 12> are controlled by the ifeq instruction in
block <0 5>, while block<13 13> is not.

The context bitmaps are used at run-time to detect which context taints mestabéed. They are
currently stored in a list, sorted on the program counter of the first irtgtruim the block. When a CFl is
executed, or the program counter runs out of the current block glvecontext bitmap is retrieved from the
list.

The figure shows a value that is attained at the end of the analysis.



5.2.4 Context taints

When a conditional CFl is executed, the combined taint of all values used ingtructions expression(s)
is stored in the context taint array. This array contains an entry peitmoral CFI, and thus has as many
entries as the context bitmap has bits. When a new basic block is enteredntégtdaitmap indicates
which conditional CFIs control the execution of the block. As the contédrt tacludes the taint of any
expression that controls execution of the current basic block, the t&nézisn the context taint array must
be combined for all conditional CFIs whose bits are set in the context bitmap.

5.3 Tainter Class

When policy-tagged data is used by an application that runs within Trishutaitiged with a security label.
In order to implement this, Trishul adds hooks in order to intercept calis fte application to core Java
methods that import data from input channels into the system. This is done Baittterclass.

When the application tries to perform an output channel operation usingitited data, like writing
to the local file system or the network, Trishul again intercepts these callstoesthat the application is
allowed to perform the operations as per the policy associated with the tida pblicy forbids this usage,
an exception is thrown. The list of method invocations that triggers the taintha&rexceptions are specified
via a policy file that is passed to the JVM as a commandline argument.

6 Performance

The ability to track and control information flow within the system comes at theresg of performance
overhead. This overhead is introduced at two distinct points. In ordergiement an effective policy based
IFC system, the Tainter class has to examine every access to possiblehapuoéls in order to decide if the
data is to be tainted, as per the policy. Similar hooks are present to examass aooutput channels too.
This overhead can vary drastically based on the granularity of the pglegifsed. For example, if a policy
states that any file read from the path ‘/secret’ has to be tainted, the hee#ts to examine each invocation
of the ‘FilelnputStream’ class constructor to check for the path name. Hoawiéthe policy states that any
file with the string “Secret Information” in its content has to be tainted, the fio@ed to examine each
invocation of methods that can read data from the file, like the ‘Datalnpat8treadLine’ function, which
could be called and intercepted as many times as there are lines in the file.

Once the hook introduces the taint, the actual taint propagation mechanisciuces the other over-
head. This can be attributed to, among other things, the analysis of the le@sjculation of the context
taints and the creation and maintenance of the taint properties of the objects.

We performed some benchmark measurements to evaluate the amount efaovierinoduced by Tr-
ishul. The experiments were conducted on an Intel Pentium M proces@GHz machine with 512MB
RAM, running Ubuntu 6.10 with a 2.6.17-10-generic SMP Linux kernel. Astinaeed before, Trishul was
implemented on version 1.1.7 of the Kaffe JVM, and was compared to the'same

IBM’s jMocha microbenchmark suite [33] provides a set of performansestdesigned to measure
the performance of operating system services of JVM implementations. Zahlemarises the result of
the ‘AllObjectConstruct (large assign)’ benchmark which records the tikentéo construct objects and
initialise all local variables. The three values are for varying number of lisiitions. The test reflects the
overhead introduced mainly by the creation of the CFGs and the creationiti@itation of the taint labels
to their default values. Though an overhead of 29% seems big, sinceetitilnark measures only the

YCompiled using config: ./configure —disable-gtk-peer —with-staticlib —siigicbin —with-staticvm —with-engine=intrp —
disable-vmdebug CFLAGS=-03



1 2 3
Kaffe 353 | 6.09 | 8.95
Trishul 456 | 7.89 | 11.55

% overhead 29.18| 29.56| 29.05

Table 2: jMocha benchmark, AllObjectConstruct (large assigmysin

256 | 512 1K 2K 4K 8K 16K 32K
Kaffe 47.57| 74.86| 113.68| 135.77| 147.95| 170.39| 190.08| 193.37
Trishul 44.29| 71.78| 109.56| 130.9 | 145.42| 168.46| 189.22| 192.7

% overhead 6.89 | 4.11 | 3.62 3.59 1.71 1.13 0.45 0.35

Table 3: jMocha benchmark, FileWriteBW in MB/s for various block sizes

initialisation time, which forms a very small part of the full runtime, we feel thatahserved overhead is
acceptable.

Table 3 compares the bandwidth (in MB/sec) of writing to a file while Table 4 coasghe bandwidth
attained in reading from a file, both of 16M size, for both Kaffe and TliSMMs. Note that in both cases,
as with the AllObjectConstruct benchmark, no taints were introduced into tbleul'system.

256 512 1K 2K 4K 8K 16K 32K
Kaffe 68.33| 116.48| 154.5 | 208.19| 273.99| 343.24| 386.52| 419.01
Trishul 65.05| 111.77| 148.25| 201.06| 271.05| 340.48| 386.38| 418.6

% overhead 4.8 4.04 4.05 3.42 1.07 0.8 0.04 0.1

Table 4: jMocha benchmark, FileReadBW in MB/s for various block sizes

The jMocha file operation benchmark results show that the maximum oveiriteadluced by Trishul is
7% which reduces to a very reasonable value of 0.4% for large block. Siikés variation can be explained
by the observation that when the files are read/written in smaller block sizefydp that performs the
read/write, is executed more times and each time Trishul has to calculate theareh baint at each CFlI
instance. These, being expensive operations, introduce more auértte the system.

Next we considered a program that opens a file, reads the contelm@aga time and writes the entire
content into another filé. We introduced taint into Trishul by setting the policy ‘taint data obtained from
any file with the stringsecret in the file’s path’. The time taken for the application to work on files of various
sizes was measured. Each line of the file contained 32 characters. Talnbengarises the time taken (in
ms), averaged over five runs.

The results show that compared to Kaffe, Trishul introduces an ogdrbkaround 25% in execution
time. While this is not a negligible overhead, we feel that this penalty is a rabkpprice to pay for the
additional security offered by the flow control and policy enforcemeantfionality we obtain in exchange.
Furthermore, we are confident that the overhead can be reducedhgrfoptimisations.

Next the performance of Trishul and Kaffe when running a brutedq@rime number generator was
compared. In such an application the time spent in propagating the taint tabssatacks as well as that
spent in executing branch context related calculations overshadowsithaeeded to create, initialise and
destroy taints. It provides one of the worst-case overhead scemansing Trishul and any similar IFC
system. The application goes through the first N integers to check if it is a pméer or not. In Trishul,
we tainted the integer under consideration in two ways. In one case weiassoa taint label with the

1The Java code is provided in Appendix



File size 128 KB | 256 KB | 512 KB | 1024 KB | 2048 KB
Kaffe 1962 3890 7714 15403 30668
Trishul 2450 4831 9627 19153 38186
Overhead % 24.8 24.2 24.7 24.3 24.5

Table 5: Time taken to read a file’s content and write it into another file

Number of integers 16384 32768 65536
Kaffe 3987 14148 52741
Trishul (no taint) 4835 (21.3)] 17814 (25.9)] 66402 (25.9)
Trishul (taint introduced once) 9548 (139.4)| 35270 (149.2) 131457 (149.2
Trishul (taint introduced individually) 9583 (140.3)| 35363 (149.9) 132373 (150.9

Table 6: Time in ms taken to check for prime numbers. Numbers in bracket is tvefftead.

variable used in the integer generation loop once, which is then propagatiee variable is used within the
application. In the other case, we tainted each integer separately aftargemarated. The performance of
these two scenarios were compared against a pure Kaffe implementatiaiTastul implementation with
no tainted data.

Table 6 summarises the execution time, in milliseconds and averaged overdegier runs, needed
in each case for different number of integers considered. The ngnrbbrackets indicate the percentage
overhead compared to the Kaffe’'s performance.

As the results show, the computational overhead incurred by Trishul withinted data is much less
compared to that incurred when taints are introduced. The very highes@reported is indicative of the
large amount of context taint related computations triggered by the tight indbe code.

7 Discussion

Performance optimisation

Trishul is still in the early stages of development and some of the perfoenmamnbers obtained in the
previous section can probably be improved by further optimisations. @adrimcurred during the creation
of the CFGs and similar action performed at application class load time canetirbieated as they have
performed once in the class’s life-cycle irrespective of the taint of tkeewtader consideration. However, the
CFGs of trusted core Java libraries used in Kaffe and Trishul, like GN9spkth [34], could be calculated
in advance and stored in a secure manner and be re-used each timesthegded.

Reducing the overhead due to context taint calculations could potentiallyympesformance further.
For example, an analysis of the branch blocks could reveal that the®hpsd in context taint calculations
are never written into and hence their security class never change wittiratheh block. This information
can then be used to skip the repeated context taint calculations perforimeadoackward branch loops are
encountered.

Policies

The Trishul architecture proposed here does not use a specific bageurity policy model, allowing it
to be used as a policy-model independent, generic IFC system. Diffeoéioy models can thus be used
as long as the policies can be translated to the level that Trishul can operaM/e are in the process
of developing an example policy model and associated translator. We are/@lking on implementing



index policy
5=00010001 | display: no
6 =00010010 | network: no
7 | e

Figure 3: Policy table

a secure data source policy-tagging system along the lines of file andrkdaleling implementation of
multilevel security systems [35].

Whatever be the policy model, its representation within Trishul influencedfibreecy and security of
the IFC system. Consider the code shown in Listing 5:

String a = ‘*No display’’
String b = ‘‘“No network'’
String ¢ = a + b;

Listing 5: Policy bitmap pseudocode

If a has been assigned the security policy “do not display” lamaés assigned “do not send over the
network,” ¢ formed by the concatenation afandb should inherit both the security policies and have an
effective policy “do not display and do not send over the netwotk®(a & b). In order for an IFC system
to support such compound policies, the policies have to be representetiilytén an efficient format. We
plan to represent policies in Trishul by bitmaps of a configurable size.ekample, the labels could be
implemented as a n * k bitmap lookup to a table that stores all the policies used birttted machine
instance. Thus, when the VM starts, it would initialise a table to hold all the polhe&eded by the system.
Every time some policy-bound data is introduced into the system, the systetesceeaew entry in this
table. The object that stores the data is then given a label that points to éxediftthe corresponding policy
in the table. The policy table is constructed within the VM memory and is not avatlatthee application
for reading or modifying.

For the example in Listing 5, when the JVM initialisesnd reads its policy, assuming that it is a new
policy, the JVM creates a new entry into the table as shown in Fig. 3 it createw &ntry in the table at
index 5.b is given a value 6. Using a 8-bit bit array in a 4x4 format, 5 can be egpdeas ‘00010001’ and
6 as ‘'00010010'. Thus = a @& b = 00010001 & 00010010 = 00010011.

Native methods

As mentioned earlier in Section 4.2, Java applications are able to invoke matheds directly using the
JNI. Once invoked, the native methods are no longer run within the JVMangdamong other things, use
registers inside the native processor and allocate memory on native. ek there is no way for the IFC
system to track the information flow once these methods are invoked. Intordgoid this, applications
have to be prevented from passing tainted data as arguments to the natieelsnelince native method
invocations are performed by the JVM, such selective disabling is possible

8 Conclusions and Future Work

In this paper we described the design and implementation of Trishul, a JvVad rdermation flow control
system. Using the concept of branch context taint, explained in the phjsnul is able to tackle the
problems associated with implicit information flow tracing.

Performance measurements using Trishul show that the system incurs liwétdetad. Optimisation
needed to reduce this, some of which have been outlined in the papepdorof our future work. We also



plan to use Trishul as the basis for the development of an actual polioyceniient architecture that can
understand and enforce policies expressed at application semantic level.
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Appendix A Taint Implementation in Trishul

A.1 Stack and Heap Taints

typedef struct _slots{ typedef struct _slots{

union { union {
jint tint; jint tint;
jword tword ; jword tword ;
jlong tlong; jlong tlong ;
jfloat tfloat; jfloat tfloat;
jdouble tdouble; jdouble tdouble;
void x taddr; voidx taddr;
charx tstr; charx tstr;
bovs b
taint_t taint; /xunsigned int«/
} slots; } slots;
Listing 6: Old slot struct Listing 7: Modified slot struct

#define move.int(t, f) (t)[0].v.tint =
#define move.int(t, f) (taintl(t,f), (t
#define taintl (t,f1l) (t)[0].taint = (

(f)[0].v.tint /x old =/
)[0].v.tint = (f)[0].v.tint)
f1)[0]. taint

Listing 8: Example of a macro modification to support taint propagation

A.2 Obiject Taints

typedef struct Hjava.lang-Object{
typedef struct Hjava.lang-Object{ struct _dispatchTable vtable;
struct _dispatchTable vtable; struct _iLockx lock;

struct _iLockx lock; taint_.t xmembertaint;
} Hjava.lang_-Object; } Hjava.lang-Object;
Listing 9: Old object struct Listing 10: Modified object struct

typedef struct _jfieldID {
Hjava_lang_Classt clazz;

(..)
union
{

/«For static fieldsx/
taint_.t taint;
typedef struct _jfieldID { /«For object fieldsx/
Hjava_lang_.Classt clazz; int taint.index;
} trishul;
} fields; } fields;

Listing 11: Old object field Listing 12: Modified object field




#define taint_object.store (obj, field ,f)
taintAdd3 (FIELD.TAINT ((obj)—>v.taddr , field),
objectTaint(obj), (obj}y>taint, (f)->taint)

Listing 13: Macro that updates membtaint array

Appendix B Performance measurement codes
B.1 Read from and write to file

package trishul.test;

import java.io .x;

class SecretRead

{
static void main (String args][])
{
try
{
long start.time = System.currentTimeMillis ();
FilelnputStream in =new FilelnputStream (args[0]);
DatalnputStream reader new DatalnputStream (in);
StringBuffer contents =new StringBuffer ();
while (reader.available () !=0){
String str= reader.readLine ();
contents.append(str);
contents .append(System.getProperty("line.separafddr”
}
String s = contents.toString ();
Writer output = null;
File aFile =new File("blah.txt");
output =new BufferedWriter( new FileWriter(aFile) );
output.write( contents.toString () );
long end.time = System.currentTimeMillis ();
System.err.println ("Time taken = " + (endime — starttime) + "ms”);
}
catch (Exception e)
{
e.printStackTrace ();
}
}




B.2 Prime Number Generator
package trishul.test.taint.arith;
import java.io .x;

class ArithPrimeTimeTaken

{
private static boolean isPrime (long i)
{
for (int test = 2; test< i; test++)
{
if (i%test == 0)
{
return false;
¥
¥
return true ;
}
public static void main(String[] args)throws IOException
{

int n_loops = 3%1024;
int n_primes = 0;

int j;
long start.time = System.currentTimeMillis ();

/l'j = taint(0,0x03); //Taint once

=0;
for (; j < n_loops; j++)
{
int i = j;
/l'int i = taint(j,0x02); // Taint every value
if (isPrime(i))
n_primes++;
}
}

long end.time = System.currentTimeMillis ();
System. out. println (nprimes+” primes found in "+(endime — start.time)+"ms ");

}




