
An efficient secure shared storage service with fault and investigative disruption
tolerance

Stelios Erotokritou
Computer Science Department

University College London
London, UK

S.Erotokritou@cs.ucl.ac.uk

Srijith K. Nair
Security Futures Practice, BT
Orion Building, Adastral Park

Ipswich, UK
srijith.nair@bt.com

Theo Dimitrakos
Security Futures Practice, BT
Orion Building, Adastral Park

Ipswich, UK
theo.dimitrakos@bt.com

Abstract �– In this work we focus on solutions to an emerging
threat to cloud-based services �– namely that of data seizures
within a shared multiple customer architecture. We focus on
the problem of securing distributed data storage in a cloud
computing environment by designing a specialized multi-
tenant data-storage architecture. The architecture we present
not only provides high degrees of availability and
confidentiality of customer data but is also able to offer these
properties even after seizures of various parts of the
infrastructure have been carried out through a judicial
process. Our solution uses a novel way of storing customer
data combining the cryptographic scheme of secret sharing
and combinatorial design theory, to ensure that the
requirements of the architecture are met. Furthermore, we
show that our proposed solution is efficient with respect to the
amount of hardware infrastructure required, thus making the
implementation and use of our proposed architecture cost-
efficient for adoption by IT enterprises.

Keywords: Cloud Storage, Secure Storage, Data Security,
Data Seizure

I. INTRODUCTION
Recent advances in networking and on-demand utility

based usage models for IT services have seen the emergence
of the outsourcing model - where IT capabilities of
institutions are outsourced to external parties. This could
range from specific processes and services (like CRM) on a
Software as a Service (SaaS) platform, to direct hosting of an
enterprise�’s IT infrastructure on an Infrastructure as a
Service (IaaS) platform. This has several advantages,
including allowing enterprises to operate with lower capital
expenditure and freeing up of resources for them to
concentrate on their core business.

In all these models, it is essential for the service provider
to ensure that customer data hosted on its infrastructure are
secure and readily available as and when required by the
customer. Such requirements are important when data
storage is the provider�’s main service, like in Amazon S3 [8]
or when storage is part of the overall service provided - as in
Amazon EC2 [1]. The provider needs to ensure not only that
a specific customer�’s data confidentiality and integrity is
protected, but also that it is able to provide business
continuity to customers by ensuring that the data can be
accessed by customers - even in the presence of hardware
and other related failures.

A core tenant of providing a software or infrastructure as
a service model for IT resources is that of multi-tenancy, in
which services belonging to multiple customers are hosted
on the same physical servers. This requires that the resources
be shared across these multiple customers. The same is also
the case with data storage.

Even though the security of data storage is a very
important upcoming issue, there does not seem to be much
work in the literature that considers data storage and data
escrow and how these two can co-exist together in industry.

The authors are of the opinion that these are emerging
threats to cloud-based services and a deterrent to their
widespread use. In this paper we consider a new security
model for services with the aim of ensuring confidentiality
and availability of distributed data storage. This will allow
for a robust network architecture for both customers and
service providers against common threats to confidentiality
and availability as well as the threat of service disruption
through escrow.

 As motivation for this work, consider the following
scenario. A cloud based storage company is offering its
service to the public. In order to achieve economies of scale,
the data of customer A is hosted on shared hardware along
with the data of several other customers. As an example, we
assume that one such customer, X, is engaged in questionable
activities and is under investigation by a government
authority. As part of the investigative process, it may be the
case that X�’s data will have to be seized. If this occurs, the
service provider will be forced to hand over storage disks in
order for authorities to gain access to X�’s data. However, in
the process they will be forced to hand over data belonging
to multiple other customers. This means that without other
preventive measures, not only is A�’s data unavailable to A
when needed but also that A�’s data has now fallen into the
hands of a third party, threatening its confidentiality and
integrity, through no fault of A.

Simple solutions to the problem, such as storing each
customer�’s data on a separate disk drive and/or having
multiple copies of the data, are either prone to unavailability
in the face of hardware failures or are inefficient regarding
resource usage and economies of scale.

In this work we focus on this specific problem and
present a multi-tenant data storage architecture geared
towards storage service providers. The architecture not only
provides high degrees of availability and confidentiality of
customer data in the default setup but is also able to offer

these properties to customers in the face of hardware failures
or even after parts of the infrastructure have been seized
through a judicial process. Our solution uses a novel way of
storing customer data, combining the concepts of secret
sharing and combinatorial design theory to ensure that the
requirements of the architecture are met. Furthermore, we
show that our proposed solution is efficient with regards to
the amount of infrastructure required, thus making
implementation and use of our proposed architecture cost
effective for use by an IT enterprise providing the service.

It should be pointed out that this paper presents the
architecture design and carries out a theoretical analysis of
its requirements. Implementation details of the proposed
architecture are considered beyond the scope of this paper
and will be carried out along with experimentation and
evaluation of the architecture in future work. .

The rest of the paper is structured as follows. In Section 2
the problem statement is defined in more detail, laying down
the system and threat models among others. Section 3
presents the proposed solution taking into account our
primary threat model and Section 4 provides the security
proof of the proposed solution. Section 5 considers our
proposed solution against our secondary threat model, while
Section 6 compares our proposed solution to other possible
solutions. Sections 7 and 8 outline extra properties which
could be included to our architecture to provide additional
properties while Section 9 looks at related work in this area.
We conclude in Section 10 with a statement of future work
that could be carried out.

II. PROBLEM STATEMENT

A. System Model
A simplified architecture outline of a multi-tenant storage

service for customer data is given in Figure 1.

Figure 1. Architecture of model for data storage with entities involved.

Three main entities can be identified in the architecture:
• Data Store Service Provider (DSSP) �– A DSSP is a

service provider that owns the infrastructure and has
the expertise to provide large scale of (secure)
storage and the management of data belonging to
external customers. This is provided as a service
which customers can rent either on long terms
contracts or using the cloud computing based pay-as-

you-use utility pricing models. The DSSP could
either expose the data service directly to the
consumer (like Amazon S3) or use it to power other
services of which data storage is an integral part
(like Amazon EC2).

• Customers - Customers can be individuals or
organizations that hire the service of DSSPs for the
secure storage and management of their data.

• Government Agency (GA) �– A GA can be any
agency which using a court order may intervene in
and disrupt the service provided by a DSSP. A GA
may intervene by demanding �– through legal means,
access to the data of a customer of a DSSP stored in
data center of the DSSP.

B. Threat Model
The threat model associated with the data storage service

we consider in this paper is two-fold.
The first is the threat to the service due to hardware

failure. It could happen that a part of DSSP�’s storage
infrastructure suffers an outage. This could happen due to
any number of reasons such as the failure of the actual disk
hardware, electricity failure of the datacenter or even a denial
of service (DoS) attack against the service infrastructure.
While a complete and total collapse of the storage
infrastructure is hard to mitigate against, any proposed
framework should be able to cope with a partial failure of the
infrastructure.

The second threat associated with the storage service is
that of seizure of part of the storage infrastructure by the GA
during the course of a court-approved investigation. Again,
the objective is that such an action will not render the whole
infrastructure of the DSSP out of service. The difference
between this threat scenario and the first is that in this one, in
addition to the inability to provide service to customers
whose data reside in the seized hardware, the confidentiality
of the data is also a concern for those customers who are not
under investigation but whose data happens to be stored on
hardware seized by the authorities. While the hardware is
seized so that authorities can have access to the data of the
customer under investigation, it is of outmost importance
that they should only have access to the data of the specific
customer and cannot breach the confidentiality of data
belonging to other customers.

In the above threat models, we assume that the DSSP is a
trusted service provider and that its customers have full
confidence in the secure management of their data. Another
model we will also consider in this paper is when this is not
true, i.e. in addition to investigative intervention, customers
do not trust their DSSP either. We outline the extra steps that
need to be taken so that the security of customer data in this
stronger security model is equivalent to that of the first.

C. System Requirements
The main requirement of the architecture will be to

provide a high degree of availability of customer data. The
architecture should therefore be able to service customers
uninterruptedly even when a high fraction - up to 50%, of
data stores are unavailable. Additionally, as the architecture

Data Store Service ProviderCustomer

Customer

Customer Government Agency

is a secure data storage service, it should also provide
customer data with high degrees of data confidentiality.

Taking into account our second threat model, the
architecture should fulfill the above two requirements even
when the data of a single customer is seized by a government
authority. Put differently, despite the seizure of system
resources by a government authority (to obtain the data of a
specific customer), the data of other customers should still be
available to them. Additionally, the government authorities
should not be able to compromise the confidentiality of the
data of the other customers from the seized resources.

III. PROPOSED SOLUTION
In this section we present the proposed storage

architecture designed to withstand the threat scenarios
described in Section 2. We start with some basic
preliminaries as background to the solution.

A. Preliminaries
1) Secret sharing

A t-out-of-n threshold secret sharing scheme allows for a
secret M to be split up into a selection {s1,�…, sn} of shares so
that the following properties are achieved:

• Any collection of t number of shares is able to
reconstruct the secret M.

• Given any subset of (t-1) or less number of shares,
no information can be obtained about the secret M.

We will be using Shamir secret sharing scheme as
outlined in [11] for our secret sharing purposes.

2) t-designs
A t-(v, k,) design [4] is a pair (X, B) where X is a v-set

of points and B is a collection of k-subsets of X (blocks) with
the property that every t-subset of X is contained in exactly
blocks.

B. General Architecture
In order to enable the architecture to offer a high degree

of availability and confidentiality for the storage of customer
data, the cryptographic scheme of secret sharing will be
used.

The data of all customers will be secret-shared using a
t+1-out-of-2t+1 secret sharing scheme. This method of
secret sharing data provides a high degree of availability as it
can withstand the unavailability of up to t data stores which
store shares of customer data (as shown later) whilst
maintaining the availability and confidentiality of data.

Because of this, the system architecture can ensure
availability of customer data with a high probability �– even
when up to t data stores which store customer data shares
under normal circumstances become unavailable.

Figure 2 below shows how the resilience level of the
architecture changes as the number of data stores which
become unavailable increases. It shows the number of
failures that can be tolerated until customer data cannot be
reconstructed. For simplicity we have assumed the value of
t=7.

Number of failures that can be tolerated with number of failures
that have occured

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7

Number of failues that have occured

N
u

m
b

er
 o

f f
ai

lu
re

s
th

at
 c

an
 b

e
to

le
ra

te
d

Figure 2. Failures that can be tolerated as the number of failures that have

occurred increases

Secret sharing also provides confidentiality of customer
data as it ensures that the data is not stored in a single data
store. For unauthorised access of customer data to occur, one
has to breach the security safeguard put in place by gaining
access to at least t+1 data stores. If someone was to breach
the security of t or less data stores, the secret sharing scheme
used in the design ensures that no information about the
customer data is recovered.

The architecture for data storage consists of 2t+2 data
stores that enables it to accommodate the storage of data for
a maximum of t+1 customers. The available 2t+2 data stores
are then classified into two different sets. The way shares of
data are stored in the data stores is shown in Figure 3 below.

Figure 3. Storing shares of customer data over the data stores

In the first of the two sets of data stores (DSa) shares
from all customers will be stored. In the second set of data
stores (DSb), shares of customers will be stored using a 1-
(t+1, 1, t) design as will be explained below. It should be
noted that despite the data stores shown to be grouped
together in Figure 3, one could follow best practise and
house them in different physical locations.

C. Actions Taken When a New Customer Joins
When a new customer joins, the first step in the process

of data storage is to carry out secret sharing of the
customer�’s data.

The secret sharing process will create 2t+1 shares of the
customer data. t+1 of these shares will be stored in the t+1
data stores of DSa �– storing only one share per data store and
storing each share only once.

The remaining t shares of customer i data will be stored
in the data stores of DSb in a similar way �– storing each
share only once and one share per data store. The difference
in the storage of shares between DSb and DSa is that the
shares stored in DSb will be stored in such a way so that for
customer 1 i t+1, the ith data store of DSb will not store
any shares of customer i data, i.e. one of the data stores of
DSb will not store any of customer i shares. This particular
way of storing customer data is equivalent to a 1-(t+1, 1, t)
design as we ensure that shares of a particular customer are
present in t of the t+1 data stores of DSb.

Consider a setup which serves 4 customers (i.e. t = 3).
Each customer�’s data would have been split into 7 (= 2t+1)
shares. Four shares of each dataset are stored over the four
datasets in DSa. The remaining shares are stores in DSb data
stores. After the fourth customer has been added to the
system, the state of the data stores will be as shown in Figure
4 below.

Figure 4. Example state of architecture with the data of four custormers

The first store in DSa stores the first share A1 of dataset
DA, the first share B1 of dataset DB, the first share C1 of
dataset DC, and the first share D1 of dataset DD. The
second store has shares A2, B2, C2, D2, the third store has
shares A3, B3, C3, D3, and the fourth store has shares A4,
B4, C4 and D4. The remaining t=3 shares of the first dataset
DA are stored across stores of DSb - storing only one share
per store and storing each share only once. Accordingly, all
but one of the stores in DSb stores one of the shares of the
first dataset. This process is generally repeated for each
dataset i to be stored, where 1 i t+1, and the ith store of
DSb will not store any shares of user i data.

D. Actions Taken When Customer Data is Updated
When customer data is updated, the new modified data

will have to be secret shared. The shares produced are then
stored in the corresponding data stores thus deleting the
original shares of the data originally stored.

E. Actions Taken When a Customer Leaves
When a customer leaves, all that needs to be done is to

delete all shares of the customer data from all the respective
data stores where customer shares can be found �– all DSa
data stores and all but one data stores in DSb. The extra slot
from this customer departure can then be made available to
another customer.

F. Actions Taken When More Customers than can be
Accommodated Enter System
As stated earlier, the architecture can accommodate the

data of only t+1 customers. When the (t+2)nd customer
wants to store their data in this service, the customer data
cannot be stored in the existing setup of the architecture. To
accommodate this new customer, a new setup of the
architecture will have to be implemented. This new
implementation is totally independent of the first
implementation and can service a further t+1 customers.

G. Actions Taken Upon Customer Data Government
Seizures
When government authorities request access to customer

i's data for legal reasons, t+1 shares of the customer data will
need to be made available to them. In this way, the
government authorities will have enough shares to
reconstruct the customer data. The t+1 shares of the
customer data handed to the authorities will be the following:

The t shares stored in DSb �– the authorities will seize all
data stores in DSb except data store i.

One of the shares in DSa �– for example the ith data store
in DSa will be seized by authorities.

As an example, if the data DA of customer A, is
requested, in order to reconstruct DA (comprising shares A1-
A7), one requires seizure of stores 2 to 4 in DSb (providing
the three shares A5, A6 and A7) and any one of the stores
from DSa (providing a fourth share from any one of shares
A1-A4).

IV. SECURITY OF ARCHITECTURE AGAINST GOVERNMENT
SEIZURES

We now show how the method of storing shares in data
stores and how the specific way of handing over data stores
to authorities allows for the architecture to continue servicing
other customers. We also show how this prevents
government authorities from breaching the confidentiality of
data for other customers (beyond the customer whose data
was seized). In this way, the architecture is secure against
any government seizures which may occur.

A. Availability of Customer Data Upon Government
Seizures
As stated earlier, when a government seizure of customer

i data occurs, only one data store of DSa will be provided to
the authorities. All data stores in DSa hold shares of all
customer data. As a result of this, after a customer seizure,
the architecture always has t shares of all customer data �– the
t shares from the data stores which remain in DSa.

From DSb, all but the ith data store �– t in total, will be
handed to authorities. The ith data store does not hold any of
customer i data shares. But it does store shares of all other
customer data.

Overall, after a government seizure t+1 shares of data for
all other customers remain in the architecture and thus the
service can guarantee the availability of customer data.

B. Confidentiality of Customer Data Upon Government
Seizures
We now show that despite the data stores seized by

government authorities for customer i data, the authorities do
not hold enough shares for all other customer data �– thus
maintaining the confidentiality of all other customer data.

As stated earlier, when GA seizes data of customer i,
only one data store of DSa will be provided to the
authorities. All data stores in DSa hold shares of all customer
data. Authorities thus have access to one share of all
customer data. From DSb, all but the ith data store �– t in total,
will be handed to authorities. For customer 1 j t+1 where
j i all but one of the t data stores handed to authorities store
shares of customer j data. More precisely, the jth data store
will not hold any of customer j data shares �– this is achieved
due to the design used in the storage of data shares in DSb.
From this, only t-1 shares of all customer data are obtained
from DSb data stores.

Continuing with the existing example from Section 3, the
combination of stores 2 to 4 in DSb only provides two shares
of each of the datasets DB, DC and DD, whereby the
addition of a store from DSa provides only one additional
share of each of the datasets DB, DC and DD, amounting to
three shares overall, which is below the threshold of shares
required to reconstruct any of the datasets DB, DC and DD.

Overall, after any government seizures, only t shares of
customer j data will be available to GA. As the data is secret
shared such that t+1 shares are needed to recover data,
government authorities cannot reconstruct the original data
with the t shares they hold and thus the confidentiality of
customer data against government seizures is maintained.

C. Deciding the Value of t
The secret sharing scheme used for the sharing of the

customer data decides the value of t. Within a design
implementation a specific range for different values of t can
be made available to customers. Customers with the same
values of t can have their data stored on the same
implementation of the architecture.

This raises the question of how a data storage service
provider decides the value of t to offer to clients. This
generally depends on the size of a provider and the size of its
customer base.

A large value of t will result in implementations with
large amounts of unused storage space until the capacity of
clients who can be accommodated by the implementation is
reached. Such an implementation will generally incur higher
running costs until its full capacity is reached �– rather than
one where the value of t is lower.

Despite this, once the provisioning of infrastructure is
carried out for implementations with large values of t, it can
accommodate new customers without any extra provisioning
�– which will be required for implementations with lower
values of t when their full capacities are reached earlier.
Additionally, once the full capacity of an implementation is
reached then when larger values of t are used, , lower overall
running and setup costs will be incurred than multiple
implementations of lower values of t which will be required
to cover the same number of customers.

It seems that small values of t would be more favorable
for smaller providers who try to maximize usage capacities
and try to keep running costs and unused storage space to a
minimum. Large providers on the other hand would be able
to bear the cost of unused storage space until the number of
clients rises.

Large providers would thus be able to offer a wider range
of t values to their customers, thus gaining a competitive
advantage over smaller providers, who provide lower values
of t, with associated lower security guarantees.

V. CONFIDENTIALITY WHEN USING NON-TRUSTED DSSP
We now consider the second threat model which states

that the storage service should ensure the confidentiality of
customer data even when a non-trusted data storage service
provider is used. We consider this in addition to the existing
threat of government seizure.

Since the shares of data are stored on data stores owned
and maintained by a non-trusted DSSP, the DSSP has access
to all the shares of the data. Because of this, the DSSP is able
to reconstruct the original data, breaking the confidentiality
of the data. It is thus important that an extra layer of security
is designed into the architecture to preserve the
confidentiality of customers�’ data in this threat model.

This is solved by first encrypting the data to be stored.
This could be carried out using encryption algorithms such
as AES and 3DES �– using key sizes relative to the
preferences of the customer. The encryption of the data will
need to be carried out by the customers themselves who will
then provide the encrypted data to the non-trusted DSSP. In
turn, the DSSP carries out secret sharing of the data and
stores the shares in the same manner as outlined earlier in the
description of the architecture. In this way, the non-trusted
DSSP cannot break the confidentiality of the customer data
as the data is encrypted.

However, a problem arises when a GA needs access to a
customer�’s data. Should government authorities seize data
stores as earlier outlined, they will only be able to
reconstruct the encrypted data.

Getting around this problem is a techno-legal process.
The technical step that needs to be added to the above setup
(to allow government authorities to recover the decrypted
format of customer data when required) can be achieved by

making it a legal requirement to carry out a 2-out-of-2 secret
sharing of the key used in the encryption of the data by the
customer. The secret sharing of the key will be carried out by
the customers themselves. Customers will also retain the
value of the encryption key so that they can decrypt their
data.

One of the shares of the key will then have to be given to
the DSSP by the customer. As the DSSP holds only one
share of the key and two are needed to recover the key, the
DSSP cannot learn the encryption key and confidentiality of
data is preserved. The other share of the key will be given to
the government authorities by the customer.

Upon request by government authorities to a DSSP for
customer data, data stores as earlier outlined will be given to
them as too will the share of the encryption key held by the
DSSP. With this solution, government authorities hold two
shares of the encryption key and can thus recover the original
unencrypted customer data1.

VI. ADVANTAGES OF PROPOSED ARCHITECTURE OVER
ALTERNATIVE SOLUTIONS

In this section we present other possible architectures that
can achieve the system requirements set out earlier and argue
why the proposed solution is better.

A. Store Individually Encrypted Customer Data
An alternative way to achieve the system requirements is

to store the encrypted data of a customer individually and
separately from the data of other customers. Implementation
in this manner protects data from an untrusted service
provider (as the data is encrypted) and also allows
availability of data when the data of customers are seized.

The great disadvantage of this implementation method is
that in order to offer a high degree of availability to customer
data, the data of the customer will need to be replicated many
times. Because of this, many data stores will be required for
the storage of the customer data. Contrary to our proposed
architecture - where for each customer only two data stores
(on average) are required, this alternative implementation
will require many more data stores per customer to offer the
same levels of availability guarantees as our proposed
solution. This raises costs for service providers and in turn
for the customers.

It is thus easy to see that the proposed architecture is a
more viable cost worthy solution �– both for customers and
the service provider.

1 A problem can be identified with the given specific solution. This is that
a customer can secret share a key which is different to the encryption key
used to encrypt the customer data. Because of this, even if the data are
seized, the customer data will not be learned by government authorities �–
which goes against one of the key properties of the architecture. However,
this problem is present in other secure storage services. Legal steps exist
which can be taken so that government authorities are able to obtain the
encryption key. An alternative solution is one where customers hand their
data to a trusted third party which encrypts the data - and then hands this to
the data service provider, secret shares the encryption key and hands the
appropriate shares to the corresponding entity. The third party also provides
customers with the value of the encryption key used. This proposed
solution though does suffer in the secure implementation of the trusted
third party.

B. Store Encrypted Customer Data Together With Other
Customer Data
Another alternative solution is one in which all customer

data is stored together in encrypted format in a data source
and this data source is replicated an appropriate number of
times. This solution is more viable than the previous
alternative solution, as less data stores are needed to offer a
high degree of availability.

The problem with this alternative solution is that the data
of many customers are stored in encrypted form in each data
store (which will be replicated over the architecture). This
allows for someone to gain access to the encrypted form of
the secret data of many customers by gaining access to just
one of these data stores.

Although this data will be encrypted with currently
secure encryption algorithms, the confidentiality of the data
could be broken in the future. This may occur when
insecurities of the encryption algorithms used are found or
when alternatively, the secrecy of encryption keys is lost
(due to bad key management).

When any of the two scenarios occurs, this could lead to
the loss of data confidentiality. If the first were to occur this
would enable the data of all customers - for which the data
were stored in the data store one had access to, to lose their
confidentiality. On the contrary, as the proposed architecture
uses secret sharing to provide confidentiality of data one
would have to gain access to at least t+1 data stores for them
to learn the data2. This is more difficult than accessing a
single data store.

Also, contrary to using encryption only for the
confidentiality of data, if one were to get access to data
shares over t or less data stores then the confidentiality of the
data will never be broken.

Using the proposed architecture presented in this work
therefore provides customers with far greater guarantees to
the confidentiality of their data.

VII. TOLERATING MORE THAN ONE CUSTOMER SEIZURE
The system architecture presented so far is able to

provide availability and confidentiality of customer data
when government seizures occur against a single customer in
a specific implementation.

If a second customer�’s data seizure were to occur, our
current solution would require for more data stores to be
handed over to the authorities in order to provide them with
t+1 shares for the customer data they are seeking.

However, by handing to them this extra data store, the
availability of data for the remaining t-1 customers will be
affected because now, as per the current implementation,
there would only be t data stores and thus only t shares of
customer data - which are not enough to recover any of the
customer data. It will also affect the confidentiality of data
for the remaining customers, as government authorities will

2 The joint use of encryption and secret sharing could also be carried out in
our proposed solution - where encrypted data is secret shared and stored
over the data stores. This provides a higher degree of confidentiality. For
one to break the confidentiality of data, t+1 data stores will need to be
accessed and the data will need to be decrypted also.

now hold t+1 shares of all customers �– but this is easily
fixed by employing the solution of encrypting the customer�’s
data before it is sent to the service provider.

A way of decreasing the probability of two customer
seizures occurring in the same implementation would be to
ensure that data from customers related to each other (for
example subsidiaries of the same company) are not stored in
the same architecture implementations. Doing this prevents
the possibility of one customer�’s data being seized as a
consequence of another customer�’s data being seized - in
case the customers are closely linked or related to each other.

Another way of overcoming this problem is outlined
below. It ensures that customer data is always available and
also that the confidentiality is also maintained �– irrespective
of the number of customer seizures that may occur.

To achieve this, a greater number, 3t+3, of data stores
will need to be used to support t+1 customers �– thus
averaging three data stores per customer. The way shares of
customer data are stored in the data stores is shown in the
following Figure 5.

Figure 5. Storing shares of customer data over the data stores

Contrary to the original description of the architecture,
this variation will now have three sets of data stores, all of
size t+1 data stores. The secret sharing of customer data will
change from a t+1-out-of-2t+1 secret sharing scheme to a
t+1-out-of-2t+2 secret sharing. The first 2t+1 shares will be
stored in the same way as the original description of the
architecture �– storing them in the exact same way over DSa
and DSb. The extra share will be stored in the new set DSc
of data stores �– only storing data shares of customer i in data
store i of DSc.

Upon the first GA data seizure request, data stores will be
handed to them in the same way as in the original description
of the architecture. This allows government authorities to
have enough shares (t+1) to recover the data of the specific
customer. In this way government authorities only hold t
shares of all other customer data, not allowing them to
recover the rest of the customers data.

All that needs to be done if any further customer data is
requested by the authorities is to provide one more share of
the customer data. In this altered architecture this extra share
will be obtained by providing the corresponding data store
from DSc. This ensures that government authorities will
have t+1 data stores of the specific customer. For the
remaining customers, only t shares are held by the authority,
thus protecting the confidentiality of the customers data.

Note that if the data store handed to the authorities came
from DSa or DSb this would provide government authorities
with t+1 shares for all customer data allowing them to break
the confidentiality of data for all customers �– which goes
against the requirements of the architecture.

With regard to the availability of other customer data,
there are always t data stores storing customer shares which
remain from DSa and one data store remains from DSb. One
data store from DSc also remains for customers whose data
has not been seized. Because of this, there are always at least
t+1 data stores holding customer data - which ensures
availability of customer data.

Even when data for t customers are seized, this new
architecture still provides the availability of the last
remaining customer data (as t data stores from DSa and one
from both DSb and DSc will remain). This is very important
for the integrity of the service3.

Figure 6 below shows how the resilience level for this
version of the architecture changes as the number of
customer data seizures increases. It shows the number of
failures that can be tolerated until customer data cannot be
reconstructed. For simplicity we have assumed the value of
t=7.

Number of failures that can be tolerated with number of

seizures that have occured

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

Number of seizures that have occured

N
um

be
r

of
 fa

ilu
re

s
th

at
 c

an
 b

e
to

le
ra

te
d

Figure 6. Storing shares of customer data over the data stores

A. Ensuring Consistency of Data in Seized Infrastructure
An issue with this design is evident. Suppose that an

implementation of the architecture accommodates the data of
t+1 customers. Upon the seizure of data of customer i, data
stores as specified in the definition of the architecture will be
handed to the authorities. Now suppose that after a period of
time, the data of customer j i are also seized. The data store

3 This version of the architecture which defends against any number of
customer seizures can be solved using 3t+1 data stores. However if t
customer seizures occur t+1 data stores will remain in the architecture.
Although this still allows for availability of data for the last customer, if
one of the remaining data stores becomes unavailable (due to a power
failure for example), then this would make the data of the last customer
unavailable. With the given solution, with t customer seizures t+2 data
stores storing shares of the last remaining customer data are available. This
provides a higher degree of availability for the last remaining customer �– as
this can tolerate at least one data store unavailability.

as defined in the specification of the architecture will be
handed to the authorities to accommodate this extra seizure.
If the data of customer j was not altered in the time between
the seizures of customer i data and the seizures of customer j
data, then there is no problem. If however the data of
customer j was altered in that time period, then the shares
stored in data stores held by government authorities will not
be up to date with the alterations of the data of customer j.

To ensure consistency, it is important for the secret
sharing of the altered customer data - whilst infrastructure of
an implementation is under government seizure, to be
consistent with the data shares stored on infrastructure held
by government authorities. This is possible as a t+1-out-of-
2t+2 secret sharing scheme is used and also because only t
shares for customer j data are held by government
authorities. Because of this, secret sharing of altered data can
be made consistent with the data held in seized data stores.
This is done by exploiting a property of polynomials of
degree t. A t degree polynomial is used to carry out the t+1-
out-of-2t+2 secret sharing. For such polynomials, there are q
(where q denotes the size of the finite field used in the secret
sharing scheme) polynomials which share the same t points.
In this case the t shares which can be shared over the
alterations will be those stored in the data stores seized by
authorities. This allows for the consistent and secure update
of customer data - even when shares stored in seized data
stores retain the same values.

B. Adding Extra Availability after Customer Seizures
The current solution to the architecture (t+1-out-of-2t+2)

is able to ensure continuity of customer data after a
government seizure occurs. It also provides high degrees of
availability. Upon a government seizure - due to the taking
away of infrastructure, availability guarantees decrease. In its
current form the architecture is able, after a government
seizure, to cope with the non-availability of at most one data
store from DSa and DSb (one overall) or up to t data stores
from DSc and still allow for the data of all customers to be
available to them. This degree of availability guarantee is
evidently much lower compared to when there are no
authority seizures.

However, the availability of the architecture could be
increased further by creating new shares (using Lagrange
interpolation) from the shares which remain in the
architecture. The number of new shares which will need to
be created depends on the availability guarantees agreed with
the customer and the service provider as part of a service
level agreement.

VIII. ADDITIONAL ARCHITECTURE PROPERTIES
In this section we consider ways to provide additional

properties which could be included to improve the proposed
architecture, with brief descriptions of how these can be
achieved.

A. Storing Previous and Updated Values Until Commit
In case customer data needs to be altered but not

immediately committed to storage, the design of the
architecture could easily accommodate this. The architecture

would need a separate data storage entity which would store
the difference between the old and the updated value of the
data. When it is time to commit the updated data, the old data
will need to be reconstructed from the data shares in the
architecture data stores. The updated value will then need to
be calculated using the reconstructed old value and the stored
difference. Finally the updated value will need to be secret
shared and these new data shares will need to overwrite the
previous data shares of the old value4.

B. Proving Integrity of Data Shares to Customers
In case customers need to check the integrity of their

stored data, this could be provided by the architecture using
hash functions (such as SHA-1). Upon creation of data
shares, hashing of these shares could be carried out. The hash
values are in turn provided to customers. Whenever
customers want to check the integrity (and availability) of
their data, customers can query the architecture which will
locate the customer data shares and calculate their hash
values. These will then be sent back to the customer who can
compare the original hash values (provided to the customer
when data are primarily stored) to the received hash values.
In this way, customers can evaluate the integrity (and
availability) of their stored data.

It should be noted that this can be an automated process
running on the customer systems and serviced by the service
provider architecture.

If it is found that the integrity of shares falls below an
acceptable level (for example if a third of the customer data
shares are corrupt) then appropriate steps can be taken to
correct any errors that may have been found. In this case the
correct values of error data shares can be recalculated - using
Lagrange interpolation, and thus an appropriate number of
correct shares can be maintained.

IX. RELATED WORK
Cryptographic secret sharing schemes [11] have been

used to distribute a secret among participants in such a way
that each participant gets a share of the secret and the secret
can only be reconstructed when a specified sufficient number
of these individual participant shares are combined together.
The primitive has however not been used in providing
service continuity for multiple customers in the face of
unavailability of parts of the storage infrastructure.

Amazon Web Services is one of the major cloud
providers to provide data storage services at an industrial
level. However, the service does not provide any form of
confidentiality and integrity guarantees. Certain storage
providers cater for only specific type of data such as
Nirvanix [7] which focus on the optimization of storage for
media files. The importance for the security and availability
of data stored in such providers has been addressed by
different papers [2, 3, 5, 10, 12].

Additionally to providing security to the data stored in
such services, extra requirements have been considered so

4 An alternative and more efficient solution is to add the difference
between the two values (old and altered) to all stored data shares.

that they can be offered by such services. The verification of
data whether by the service itself or remotely by customers is
one such service and this has been looked at in previous
work such as [6, 9, 13]. The work presented in [13]
concentrates on ensuring the correctness of users�’ data in a
remote �‘cloud�’-based infrastructure. It can also be used to
pinpoint the servers among which the distributed data is
misbehaving. While [3] in addition supports dynamic
operations like update, delete and append on the data, it does
not tackle the central issue addressed in this work - of
performing the cryptographic computation and data piece
distribution in such a way so as to ensure secure tolerance to
missing/offline/seized data storage parts.

The work reported in [14] again concentrates on
providing publicly verifiable secure data storage while [15]
looks at a form of threshold secret sharing scheme that
supports verifiability as well as the ability to dynamically
add or remove shareholders. Neither of them considers the
problem that forms the core of our work nor can their
solutions be used to address the issues solved by our designs.

Even though the security of data storage is a very
important upcoming issue, there does not seem to be much
work in the literature which considers data storage and data
escrow and how these two can co-exist together in industry.
In this work this has been considered along with related work
aspects to data storage that were mentioned. As a result of
this we consider the work we present as an important step to
making data storage in industry feasible with minimal
operational and legal issues.

X. CONCLUSIONS AND FUTURE WORK
In this work we have focused on the security and

availability of customer data for a data store service provider
under specific circumstances where the escrow of customer
data by government authorities may take place. We have
proposed a data storage architecture for this scenario. We
believe our work to be of importance to data storage services
as it is able to achieve this with an efficient and elegant
system architecture that achieves the requirements with a
fairly low demand for infrastructure �– leading to lower costs
and thus great industrial competitive advantages.

As future work, a more complete analysis of our
proposed architecture will be carried out. This will include
an experimental evaluation of an implementation of the
presented architecture.

As a continuation to our work, it will be interesting to see
how future work can refine our proposed architecture to deal
with a more authoritarian government intervention which
may demand all infrastructures where the data of a customer
may lie.

REFERENCES

[1] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2), Dec
2008. [Online] Available: http://aws.amazon.com/ec2/.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson and D. Song, �“Provable Data Possession at Untrusted
Stores,�” Proc. of CCS �’07, pp. 598�–609, 2007.

[3] K. D. Bowers, A. Juels, and A. Oprea, �“HAIL: A High-Availability
and Integrity Layer for Cloud Storage,�” Cryptology ePrint Archive,
Report 2008/489, 2008, http://eprint.iacr.org/.

[4] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial
Designs, CRC Press, Inc., New York, 1996.

[5] D. L. G. Filho and P. S. L. M. Barreto, �“Demonstrating Data
Possession and Uncheatable Data Transfer,�” Cryptology ePrint
Archive, Report 2006/150, 2006, http://eprint.iacr.org/.

[6] J. Hendricks, G. Ganger, and M. Reiter, �“Verifying Distributed
Erasurecoded Data,�” Proc. 26th ACM Symposium on Principles of
Distributed Computing, pp. 139 �– 146, 2007.

[7] "Nirvanix," http://www.nirvanix.com.
[8] M. Palankar, A. Onibokun, et al., "Amazon S3 for Science Grids: a

Viable Solution," in 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI'07), 2007.

[9] T. S. J. Schwarz and E. L. Miller, �“Store, Forget, and Check: Using
Algebraic Signatures to Check Remotely Administered Storage,�”
Proc. of ICDCS �’06, pp. 12�–12, 2006.

[10] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan, �“Auditing
to keep online storage services honest,�” in Proc. of HotOS�’07.
Berkeley, CA, USA: USENIX Association, 2007, pp. 1�–6.

[11] A. Shamir, �“How to Share a Secret�”, Communications of the ACM,
22(11): 612-613, 1979.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, �“Ensuring Data Storage
Security in Cloud Computing,�” in Proc. of IWQoS�’09, Charleston,
SC, USA, July 2009.

[13] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, �“Enabling public
verifiability and data dynamics for storage security in cloud
computing,�” in Proc. of ESORICS�’09, Saint Malo, France, Sep. 2009.

[14] J. Yu, F. Kong, R. Hao and Z. Cheng, �“A Publicly Verifiable
Dynamic Sharing Protocol for Data Secure Storage�”, pp.471-472,
2008 The Ninth International Conference on Web-Age Information
Management, 2008.

[15] T. M. Wong, C. Wang and J. M. Wing, �“Verifiable Secret
Redistribution for Archive Systems�”, Proceedings of the First
International IEEE Security in Storage Workshop, pp. 94-105, 2002.

