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Abstract 
 
Security enforcement framework is an important 

aspect of any distributed system. With new 
requirements imposed by SOA-based business models, 
adaptive security enforcement on the application level 
becomes even more important. 
Our work on the enforcement framework to date has 
resulted in a comprehensive middleware-based 
solution leveraging on web services technologies. 
However, potential merits of hardware-based solutions 
to further secure application exposure have not been 
considered so far. 
This paper describes a method for combining software 
resource level security features offered by Web 
Services technologies, with the hardware-based 
security mechanisms offered by Trusted Computing 
Platform and system virtualisation approaches. In 
particular, we propose trust-based architecture for 
protecting the enforcement middleware deployed at the 
policy enforcement endpoints of web and grid services. 
The main motivation is to additionally secure execution 
environment of the applications, by providing virtual 
machine level separation that maps from logical 
domains imposed by web services level enforcement 
policies. 
 
1. Introduction 
 
1.1 The Context 
 
With the adoption of Service Oriented Architectures 
(SOA), a new use of a term “virtualisation” is 
appearing. It is being used in the context of service 
virtualisation, to describe an advanced way of cross-
enterprise integration of application services and 
virtualisation of the (cross-organisational) 
computational environment where these services are 

hosted and executed. We call this a Virtual Hosting 
Environment (VHE) middleware capability. 
Virtualisation of Hosting Environments refers to the 
federation of a set of distributed hosting environments 
for execution of an application and the possibility to 
provide a single (logical) access point to this set of 
federated hosting environments.  In addition to the 
application services, this virtualised service bundle 
needs to include a number of middleware services 
(potentially provided by a third party) for managing 
non-functional aspects of the application. From the 
perspective of a VHE consumer, the latter are 
transparent. VHE as such requires two main things − 
trust federation and security enforcement. 
The former deals with the establishment of the trust 
relationships among multiple parties and its 
management over the lifecycle of the collaboration, 
including mechanisms for specifying and adapting the 
agreements between the parties that define contracts of 
service interactions. The basis of the preferred 
federation model used in our work is described in [1]. 
The latter (security enforcement) deals with monitoring 
and enforcement of these contracts during the service 
interactions and execution. For the preferred security 
enforcement model used in our work see [2]. 
 
1.2 The Motivation 
 
In this paper we extend the security enforcement 
design proposed in [2] in order to extend the integrity, 
reliability and availability of the web services 
enforcement system by leveraging on trusted 
computing technology as described in [3] and [5]. 
The architectural extension builds on the concepts of 
virtualization and process isolation / 
compartmentalization in the presence of a trusted 
computing hardware. While these concepts are not 
new, commercial-grade hardware that provides support 
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for the technology has only recently been introduced 
into the market making their use economically viable.  
The main aim is to design a web service architecture 
that can provide secure isolation between several 
distinct exposures of a (web) service of the same type - 
which share the same physical hardware resources, but 
are being used in different interaction contexts. The 
three important security problems addressed in this 
paper are: 
1. Securing the configuration file of each “instance” 

of the web service; 
2. Securing the data of each service instance; 
3. Securing the memory used by the service instance.  
The approach taken in addressing the above concerns 
is to use the principle of secure containment, with the 
appropriate support of a Trusted Platform Module 
(TPM) [3] -like secure hardware. The underlying idea 
is that each instance of a web service is run inside an 
isolated partition that has no access to any resources 
(including memory and data handles) used by another 
similarly isolated compartment. The trusted hardware 
base such as the TPM is logically emulated within each 
compartment and can hence be assumed to be 
dedicated to each partition for all practical purposes.  
 
2. Web Services Security Enforcement 
Framework 

 
The enforcement middleware is a system for adaptive, 
extendable policy-based message level enforcement for 
heterogeneous computational resources exposed as 
network services and distributed over a network. 
The full set of requirements that address management, 
adaptation and functional aspects of the enforcement 
middleware, as well as the detailed description of the 
system is presented in [2]. 
The enforcement middleware provides a composable 
system that intercepts each message that is targeted at 
or is originating from a network service endpoint. It 
dynamically deploys a collection of message 
interceptors in a chain (interceptor chain) through 
which the message is processed prior to transmission. 
The interceptor chain is formed per intercepted 
message based on the content and protocol context of 
the intercepted message, and constraints derived from 
the configuration policies of the enforcement 
middleware. 
The same enforcement middleware can be used to 
protect a number of resources offered by different 
providers. Further, some aspects of the enforcement 
middleware configuration are specific to each resource 
being protected, whereas others can be common the 
enforcement middleware instance. The management of 
the enforcement middleware is decoupled from the 

Enforcement Point itself, allowing several disparate 
administrators or management services to have 
ownership for managing only certain specific aspects 
of the enforcement middleware. 
 
2.1 Policy Framework Structure 
 
The behaviour and configuration of the enforcement 
middleware is based on the data contained within a 
number of supporting policies, which can be of four 
types: 
• Interceptor Reference Policy (IRP) contains 

mapping between each available enforcement 
action and the computational entity (i.e. the 
interceptor) that executes this action. 

• Enforcement Configuration Policy (ECP) specifies 
the enforcement state, the actions that are to be 
enacted, the conditions under which each action is 
executed, the parameters for each action and the 
sequencing of the actions. The action types in the 
ECP are a subset of the action types included in 
the IRP policy. 

• Utility Service Policy (USP). While processing the 
message some of the interceptors may require the 
use of capabilities of external services (e.g. access 
to a key-store or a policy authorisation service). 
All information regarding the alternative services 
available and the locations of these services are 
contained in the Utility Service Policy. 

• Capability Exposure Policy (CEP) is used for 
publishing additional conditions for interacting 
with a protected resource. The network entities 
interacting with a protected resource are obliged to 
provide the required data in addition to any other 
application-specific data requested by the provider 
of the application service. 

ECP policies are deliberately separated from IRPs in 
order to abstract away implementation specific detail. 
For example, an ECP policy can state that encryption 
of the SOAP message body is executed but there are 
different algorithms that can be applied to do so. In 
order to dynamically deploy the appropriate interceptor 
in the chain that will correctly execute enforcement 
actions the content of the message has to be analysed 
and the actual encryption scheme will need to be 
identified from the intercepted message. Once the 
relevant enforcement actions and their configuration 
parameters and order in which they will form the chain 
have been identified, the IRP is loaded and inspected in 
order to determine the references to the interceptor 
implementing each enforcement action.  
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2.2 Enforcement Process 
 
The enforcement middleware defines different groups 
of interceptors that fall into three generic types: 
verification, transformation, and for invoking common 
infrastructure capabilities. 
Once a message is intercepted, a dispatcher analyses 
the contents of the message, as this may convey 
information required to determine which ECP policy to 
use. For SOAP messages, ECP is typically determined 
based on the reference endpoint of the targeted service 
and optionally any other related information from the 
message header. 
Based on this contextual information and the state of 
the enforcement middleware, the enforcement 
middleware determines suitable ECP policy for 
processing the message. Once the appropriate 
interceptors have been identified and deployed in the 
interceptor chain, the message is pushed through the 
chain and each interceptor executes the corresponding 
processing / enforcement action in a sequence (see 
Figure 1).  
After the message is processed, the interceptor chain is 
dissolved in anticipation of another message being 
intercepted. After the processing has completed, the 
message is dispatched to the recipient. 
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Figure 1: Enforcement process overview 

 
2.3 Deployment architectures 
 
There are several alternatives in the deployment of the 
enforcement middleware: at the same host (machine) 
as the service it is protecting, as a network 
intermediary, or in a distributed fashion (by 
aggregating functionality of a set of enforcement 
components distributed over a network). In the context 
of this paper, we focus on the first alternative. 
 

3. Virtualisation and Trusted Computing 
 
Virtualisation and trusted computing technologies 
provide system architectures and tools that allow 
building of inherent security and trust mechanisms in 
grid and web services hosting environment. 
Virtualisation provides mechanisms to create partitions 
that share the hardware resources but are isolated in its 
working. This helps in improving the security of the 
processes, as well as making the process distribution 
efficient and optimises the use of limited resources. 
Trusted computing allows cryptographic keys and 
application data to be stored securely within the 
machine hardware and provide mechanisms to check 
the integrity of a remote machine. 
In this section we give a brief summary of these 
technologies. 
 
3.1 Virtualisation 
 
The concept of a virtual machine was first developed 
by IBM in order to provide concurrent access to the 
mainframe resources [6]. Each virtual machine (VM) 
provided a completely protected and isolated 
abstraction of the underlying hardware architecture to 
the applications running inside it. In the recent years, 
hardware virtualization has become a very popular 
technology due to the fact that sharing of hardware 
among multiple workloads reduces operating costs as 
well as makes the system utilization more efficient [7]. 
In general, the process of virtualization allows the 
creation and maintenance of multiple virtualization 
layers providing each of them with an isolated and 
partitioned access to the underlying hardware resources 
like CPU, memory, input and output channels, and so 
on. Virtual Machine Monitor (VMM) is the software 
layer that provides this virtualization layer and 
supports its creation, maintenance and teardown. 
Commonly, the VMM layer is called the host and the 
individual VMs are termed the guests. Figure 2 
demonstrates the relationships between the VMM and 
the VMs. 
Different levels of virtualisation are possible, like the 
instruction set architecture level virtualisation 
implemented by QEMU [8] and others that provide full 
instruction set level virtualisation,, to hardware 
abstraction level virtualization as implemented by Xen 
[9], which provides virtualisation at the hardware 
abstraction layer. Detailed explanation of these 
implementations are beyond the scope of this paper 
and interested readers are referred to [10],[11]. 
The increased interest in the field of application and 
web service technologies has made the hosting 
providers of such services look for system architectures 
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to increase their system efficiency and consolidate their 
hardware resources. Virtualisation has proved to be a 
perfect fit for this requirement. Several recent research 
works have been investigating on how virtualization 
can be extended to support the on demand nature of 
web service hosting requirements. SODA [12] is one 
such architecture that virtualizes each service nodes by 
running it within individual VMs on the hosted 
machine. By designing their architecture in a ‘Master-
Agent’ setup they create the needed services on 
demand, across several machines in the hosting farm. 
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Application
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Figure 2: Virtual Machine Architecture 

 
Up to date, works in the area of virtualisation provide 
only basic process isolation and system security that is 
inherent in the virtualisation paradigm. The additional 
security requirements for hosting web and application 
services have not been addressed so far. In this paper 
we use the security features of Trusted Computing to 
address these requirements. 
 
3.2 Trusted Computing 
 
Trusted computing aims to provide open commodity 
systems with certain desirable properties, usually 
associated with high-assurance closed systems. For 
example, such trusted platforms, while allowing 
applications from different sources to run on the same 
physical platform, allow third parties to determine 
which software are running on the system. This 
provides a degree of trust about the expected behaviour 
of these systems. 
The Trusted Platform Module (TPM) specifications 
[3], defined by the Trusted Computing Group [13], 
provide a mechanism to implement such a trusted 
computing architecture by using (among other things), 
a hardware root of trust. The TPM is implemented as a 
chip that is attached to the motherboard of the 
machine. It provides several cryptographic operations, 
such as random number generation, asymmetric and 
symmetric key encryption and decryption, signing, 
secure hashing, etc. Each TPM has several 
cryptographic keys built in.  

Storage Root Key (SRK) forms the Root of Trust for 
Storage and always resides in the non-volatile memory 
of the TPM. When a TPM generates a key, it is 
generated by its parent key and SRK forms the root of 
this tree. Endorsement Key (EK) is used to uniquely 
identify the TPM. Each TPM manufacturer provides a 
certificate to the EK attesting the compliance of the 
TPM to the specifications. The TPM produces 
Attestation Identification keys (AIKs) that are linked to 
the platform using certificates from the EK. 
Certification Authorities (CAs) uses the certificate 
issued by the EK and the manufacturer’s certificate of 
EK to attest the AIKs. 
These TPM chips are being increasingly deployed in 
consumer level laptops / desktops, as well as industrial 
level machines like the IBM eServer x366 [14]. 
Each TPM has at least 16 Platform Configuration 
Registers (PCRs) that store measurement values 
(usually hash values) of platform configurations. The 
PCR values along with the AIKs can be used to attest 
the state of a machine using the process of remote 
attestation [15]. 
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Figure 3: vTPM Architecture 

 
Just like any other hardware, the TPM needs to be 
virtualized in order to be used within a VM setup. 
IBM’s work on vTPMs [5] is an excellent starting 
point in this front (see Figure 3). The hardware TPM is 
controlled by a vTPM Manager that resides in one of 
the VMs. It also creates other vTPM instances that are 
then associated with individual VMs. Each vTPM 
instance performs the full set of TCG TPM 
specifications, thus allowing each VM to us the vTPM 
instances as if the VM had a direct control over the 
physical TPM chip.  
By generating an EK per vTPM, this architecture 
allows each vTPM, and hence each VM that uses the 
instance, to decrypt information using the private key 
associated with the EK. It also enables the creation of 
independent key hierarchy per vTPM. 
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By using the trusted computing architecture for 
deploying web services, one can not only increase the 
security of the system (keeping the encryption key 
secure in the TPM), but can also support the possible 
requirement of consumers to verify the integrity of the 
deployed system (using remote attestation). 
 
4. Candidate Architectures for 
Virtualisation of Enforcement Middleware  
 
As described earlier in section 2.2, before a SOAP 
message is delivered to a web service instance, it is 
passed through a number of Policy Enforcement Points 
(PEPs), which adapt their configuration at the runtime 
based on the context surrounding the interaction and 
the ECP policy. 
When virtualising the web services framework, careful 
consideration has to be given to the process of 
virtualising the enforcement framework, in order to 
preserve the semantics of the ECP policy at the VM 
level. 
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Figure 4: Shared PEP/service partition model 

 
One straightforward way of doing this is shown in 
Figure 4. In this architecture each PEP is virtualised 
along with the service it protects into separate VMs. It 
may seem that such a process isolation would increase 
the system security, However, since the web service 
(along with all the components that constitute it) share 
the same VM partition as the enforcement framework, 
they will also share the same memory pages as the 
enforcement framework. Hence a malicious component 
could potentially attack the enforcement framework 
through malicious buffer overflows or similar 
mechanisms. In addition, this model would require 
replication of the interceptor repository across each 
partition in order to provide at runtime a secure non-
shared instance of every legal interceptor combination 
(that corresponds to any applicable action) within that 
VM. In turn, this increases complexity of the 
management and configuration of the security 
enforcement system. 
An alternative approach that is a better match for the 
PEP middleware is the architecture shown in Figure 5. 

It contains a dedicated VM partition that holds all the 
interceptors in the repository, as well as the individual 
ECPs for each web service instance hosted on that 
machine. Effectively, there would be a single PEP 
deployment with different PEP configurations 
depending on the targeted web service (instance). 
It is clear that the repository containing the different 
PEP configurations need not be replicated across the 
individual partitions. However, this setup would 
require that resources like physical memory be shared 
between action chains that operate on different SOAP 
messages directed for different web service instance. 
We do not consider this being an issue, since it is 
possible to use a shared resource environment at the 
PEP level without affecting the security and integrity 
of the application part of the SOAP messages, which 
contains the payload for the WS instance. 
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Figure 5: Dedicated PEP partition model 

 
Since the SOAP message consist of a number of XML 
elements, the transformation/ manipulation of the 
SOAP messages allows for different processing of 
different parts of the message, as prescribed by the 
SOAP specification [17]. Furthermore, WS-Security 
[18] prescribes that arbitrary parts of the message can 
be selectively protected (i.e. encrypted/ signed). 
Therefore, the portion containing the application data 
(typically the body of the message) can be encrypted 
with a key that is accessible only by the virtualized 
TPM of the service instance partition. If required, the 
headers that need to be accessed by the common PEP 
partition can then be encrypted, for a key that is 
available within the TPM of this common PEP 
partition. 
Next section describes the partitioning architecture that 
builds on the preferred model of the dedicated PEP as 
proposed in Figure 5. Even though this model could 
have potential scalability issues when the number of 
WS VMs becomes very large, we expect it to be 
advantageous compared to the model proposed in the 
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Figure 4 that would require interceptor repository to be 
replicated across every VM. In addition, the model 
presented in Figure 5 provides better separation of the 
management of application and infrastructure 
functionalities. Another reason for choosing the 
dedicated PEP partition model is that it closely 
resembles the vTPM architecture model, making it 
easier to add trusted computing support into the 
system, as explained in the next section. 
 
5. Proposed Partitioning Architecture 
 
Keeping in mind the design criteria discussed in the 
previous section, we propose the partitioning 
architecture shown in Figure 6 to support virtualised 
web and grid services deployment. The architecture 
preserves all the properties of the security enforcement 
middleware framework (i.e. PEP), while enabling 
independent TPM support for each of the web service 
instances and the dedicated PEP. 
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Figure 6: Proposed “TCP-PEP” partition 
architecture for WS instances 

 
The Base Service Manager (BSM) is a trusted piece of 
software that manages the creation, maintenance and 
teardown of WS instances and is logically located at 
the same level as the type2 VMM3. When the hosting 
environment is initialised for the first time, the BSM 
instructs the VMM to create a dedicated VM partition 
for the PEP, and populates it with the interceptor 
repository. 
The PEP partition is used in order to store any general 
(i.e. service-instance-independent) configuration data 
and components. In particular, the interceptor pool of 
the enforcement middleware, the interceptor reference 
policy, and the utility service policy are stored there. 
The run-time engine of the enforcement middleware 

                                                        
3 VMM runs within level 2 protection ring (OS) with guest OS 
running at level 3 (applications) 

can access the data and components in this partition. 
Also authorized security infrastructure administrators 
may obtain access to information in this partition by 
using the programmatic interfaces as explained in [2]. 
At the time of the web service deployment, an 
administrator provides the application files and the 
Enforcement Configuration Policy for the web service. 
When requested by the administrator to instantiate a 
web service, the BSM first instructs the VMM to create 
a new secure VM partition with a dedicated vTPM. 
This provides a secure execution environment for the 
web service instance. The BSM then instructs the PEP 
to create a ‘base’ configuration file for the service, 
which combines external address of the service 
instance (i.e. EPR – end point reference), VM identifier 
of the partition where the instance is hosted, and the 
reference to the appropriate Enforcement 
Configuration Policy. This allows the PEP to apply the 
correct policy to the incoming messages at runtime 
whilst channelling them to/from the appropriate VM. 
Then the WS instance is created in the newly 
virtualised partition. 
The ECP data as well as all general purpose 
configuration policies, i.e. interceptor reference policy 
(IRP) and the utility service policy (USP) of the 
enforcement middleware are saved within the PEP 
partition while all the data (including service instance 
state) that is received or created by the service instance 
is isolated within the WS’s VM partition. 
Once the WS instance partition has been created with 
its own virtual TPM, the vTPM creates relevant key 
pairs (EK, SRK, AIKs etc.) for the WS instance. The 
public key of the EK pair is then advertised as the 
public key of the WS instance. Any data sent for the 
WS instance can then be encrypted with this public 
key; an additional, “signature” key-pair can be 
created4. In general, an arbitrary number of the 
“crypto” material, secret(s) etc. can be created for 
various purposes and protected by the vTPM keys. 
The AIKs, together with the PCR values of the vTPM, 
can be used by the web service customers to perform 
remote attestation of the VM’s state. This is 
particularly useful for security auditing and traceability 
of the creation and management of system partitions 
and TPM virtualisations. 
When a SOAP message is intercepted, it is sent to the 
PEP partition where the endpoint address (EPR) and 
other declared identification meta-data is used for 
deciding which enforcement configuration policy 
(ECP) to apply as described in [2]. The PEP uses the 
                                                        
4 In reality, this will yield more complex scheme due to the fact that 
web services would use XML – style assertions to request or provide 
authentication information. However, the corresponding encryption / 
signature EK keypairs can be used to secure this information at the 
vTPM. 
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information specified in the ECP to collect the 
appropriate handlers and to create the handler chain 
through which the message is then passed. 
Once the PEP has performed the necessary 
enforcement and checks at its level, the SOAP message 
is passed into the BSM, which uses the EPR data in the 
message to route the message to the appropriate WS 
instance partition. Since the data for the WS instance 
can be decrypted only with a key encrypted with the 
partition’s vTPM specific key, it can be guaranteed that 
the data is not accessible outside the service partition. 
The web service instance however needs to have 
access to read, as well as other (management) services 
to edit its configuration file contained within the PEP 
partition. Since an uncontrolled cross-partition data 
access process should not be allowed, a standard 
interface is defined that allows the WS partition to read 
its configuration file. Since the WS partition is not 
allowed to read the file directly, the configuration 
changes have to be first conveyed to the PEP partition 
through the defined interface via the BSM. Using the 
AIK of the WS partition’s vTPM to sign the request is 
enough to prove the authenticity of the request and 
access the configuration file via an authorised process 
located in the PEP partition. Note that editing and 
modification of the configuration file should not be 
allowed by the WS itself. This is the responsibility of 
the management services that are normally remotely 
hosted, so this would typically be a web services call to 
the management interfaces of the PEP (see section 2 
and reference [2] for more information on the PEP 
manageability). 
The hosting platform provider considers the VMM and 
the TPM VM trusted, and the WS components 
(including the interceptor chains) as non-trusted. An 
attack targeted against a specific WS component is 
confined within the WS VM and does not affect any 
other WS instance on the same physical machine nor 
the core trusted part of the hosting platform. Similarly, 
since the interceptor chains reside within a separate 
PEP VM, a malicious or buggy interceptor provider 
would not endanger the WS operation and data. 
The vTPM's secret key used to encrypt data in the WS 
VM provides confidentiality. The remote attestation 
functionality of the TPM (and vTPM), which allows a 
remote user to verify the status of the hosting 
environment, provides integrity. The use of VM 
architecture allows for the migration of the WS 
instance during its execution (should it be required), 
therefore contributing to the availability of the 
architecture. 
 
 
 

6. Related Work 
 
Although there is significant existing work on the 
subject of virtualisation, its application in the web and 
grid service framework is less studied. SODA [12] is 
one of the few systems that use virtualisation 
technology to create on-demand VM partitions to 
improve resource utilisation. However, they do not 
consider the policy enforcement framework and 
security in general in their design. Daonity [16] uses 
Trusted Computing technologies to bolster the trust 
model of grid service framework by enhancing the 
security of credential and membership management. 
However they too do not consider the implementation 
of the policy enforcement framework nor about the 
security and integrity of web service components. 
IBM’s vTPM [l] project proposes and implements 
architecture to virtualise the TPM hardware across 
VMs. Their work also provides mechanism to migrate 
the vTPM along with the rest of the VM in an efficient 
manner. However they do not consider the use of 
vTPM within a web or grid service infrastructure. The 
architecture proposed in this paper uses and also draws 
inspiration from the vTPM design. 
 
7. Conclusion 
 
In this paper we propose an architecture for virtualising 
the policy enforcement framework of web services. By 
incorporating the functionalities provided by the 
trusted computing technologies with the isolation 
properties of virtual machines partitions, our 
architecture enhances the security and integrity of web 
service infrastructure, in particular the crucial 
functionality of the dynamic policy enforcement 
framework.  
We consider two alternative architecture designs and 
choose the one that can more efficiently support our 
requirements for secure provisioning of multiple web 
services in a single hosting environment. The key idea 
is to separate policy enforcement from application at 
the virtual machine level, so that applications cannot 
compromise security mechanisms. 
In addition, the architecture provides separation of the 
management of application and infrastructure 
functionalities. This provides a baseline for the secure 
service hosting and operation in federated 
environments, where providers of the applications 
(ASPs), hosting environments, and security services 
may be different entities, hence requiring separation of 
control. For example, host provider may wish to limit 
maximum number of the partitions in order to deliver 
committed quality of service, ASPs to be able to 
upgrade their application functionality without having 
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to deal with managing its protection, and the security 
service providers to enforce the application security 
based on the higher level agreements established with 
the ASPs5. 
The system environment assumed in the architecture 
builds on top of the “TCG Generic Server 
Specification” proposal [4] of the Trusted Computing 
Group, which increases the confidence that it can be 
assumed a realistic production environment. 
Next stage in this work is experimental implementation 
of the proposed architecture for securing interactions 
on the WS-based B2B Gateway described in [21]. 
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