
Virtualised Trusted Computing Platform for Adaptive Security
Enforcement of Web Services Interactions

Ivan Djordjevic1*, Srijith K. Nair2*†, Theo Dimitrakos1

1 SOA Security, Security Research Centre, British Telecommunications, UK
2 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

{ivan.djordjevic, theo.dimitrakos}@bt.com, srijith@few.vu.nl

* Editing authors
† Work carried out during the author’s scientific visit at BT Security Research Centre.

Abstract

Security enforcement framework is an important

aspect of any distributed system. With new
requirements imposed by SOA-based business models,
adaptive security enforcement on the application level
becomes even more important.
Our work on the enforcement framework to date has
resulted in a comprehensive middleware-based
solution leveraging on web services technologies.
However, potential merits of hardware-based solutions
to further secure application exposure have not been
considered so far.
This paper describes a method for combining software
resource level security features offered by Web
Services technologies, with the hardware-based
security mechanisms offered by Trusted Computing
Platform and system virtualisation approaches. In
particular, we propose trust-based architecture for
protecting the enforcement middleware deployed at the
policy enforcement endpoints of web and grid services.
The main motivation is to additionally secure execution
environment of the applications, by providing virtual
machine level separation that maps from logical
domains imposed by web services level enforcement
policies.

1. Introduction

1.1 The Context

With the adoption of Service Oriented Architectures
(SOA), a new use of a term “virtualisation” is
appearing. It is being used in the context of service
virtualisation, to describe an advanced way of cross-
enterprise integration of application services and
virtualisation of the (cross-organisational)
computational environment where these services are

hosted and executed. We call this a Virtual Hosting
Environment (VHE) middleware capability.
Virtualisation of Hosting Environments refers to the
federation of a set of distributed hosting environments
for execution of an application and the possibility to
provide a single (logical) access point to this set of
federated hosting environments. In addition to the
application services, this virtualised service bundle
needs to include a number of middleware services
(potentially provided by a third party) for managing
non-functional aspects of the application. From the
perspective of a VHE consumer, the latter are
transparent. VHE as such requires two main things −
trust federation and security enforcement.
The former deals with the establishment of the trust
relationships among multiple parties and its
management over the lifecycle of the collaboration,
including mechanisms for specifying and adapting the
agreements between the parties that define contracts of
service interactions. The basis of the preferred
federation model used in our work is described in [1].
The latter (security enforcement) deals with monitoring
and enforcement of these contracts during the service
interactions and execution. For the preferred security
enforcement model used in our work see [2].

1.2 The Motivation

In this paper we extend the security enforcement
design proposed in [2] in order to extend the integrity,
reliability and availability of the web services
enforcement system by leveraging on trusted
computing technology as described in [3] and [5].
The architectural extension builds on the concepts of
virtualization and process isolation /
compartmentalization in the presence of a trusted
computing hardware. While these concepts are not
new, commercial-grade hardware that provides support

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

for the technology has only recently been introduced
into the market making their use economically viable.
The main aim is to design a web service architecture
that can provide secure isolation between several
distinct exposures of a (web) service of the same type -
which share the same physical hardware resources, but
are being used in different interaction contexts. The
three important security problems addressed in this
paper are:
1. Securing the configuration file of each “instance”

of the web service;
2. Securing the data of each service instance;
3. Securing the memory used by the service instance.
The approach taken in addressing the above concerns
is to use the principle of secure containment, with the
appropriate support of a Trusted Platform Module
(TPM) [3] -like secure hardware. The underlying idea
is that each instance of a web service is run inside an
isolated partition that has no access to any resources
(including memory and data handles) used by another
similarly isolated compartment. The trusted hardware
base such as the TPM is logically emulated within each
compartment and can hence be assumed to be
dedicated to each partition for all practical purposes.

2. Web Services Security Enforcement
Framework

The enforcement middleware is a system for adaptive,
extendable policy-based message level enforcement for
heterogeneous computational resources exposed as
network services and distributed over a network.
The full set of requirements that address management,
adaptation and functional aspects of the enforcement
middleware, as well as the detailed description of the
system is presented in [2].
The enforcement middleware provides a composable
system that intercepts each message that is targeted at
or is originating from a network service endpoint. It
dynamically deploys a collection of message
interceptors in a chain (interceptor chain) through
which the message is processed prior to transmission.
The interceptor chain is formed per intercepted
message based on the content and protocol context of
the intercepted message, and constraints derived from
the configuration policies of the enforcement
middleware.
The same enforcement middleware can be used to
protect a number of resources offered by different
providers. Further, some aspects of the enforcement
middleware configuration are specific to each resource
being protected, whereas others can be common the
enforcement middleware instance. The management of
the enforcement middleware is decoupled from the

Enforcement Point itself, allowing several disparate
administrators or management services to have
ownership for managing only certain specific aspects
of the enforcement middleware.

2.1 Policy Framework Structure

The behaviour and configuration of the enforcement
middleware is based on the data contained within a
number of supporting policies, which can be of four
types:
• Interceptor Reference Policy (IRP) contains

mapping between each available enforcement
action and the computational entity (i.e. the
interceptor) that executes this action.

• Enforcement Configuration Policy (ECP) specifies
the enforcement state, the actions that are to be
enacted, the conditions under which each action is
executed, the parameters for each action and the
sequencing of the actions. The action types in the
ECP are a subset of the action types included in
the IRP policy.

• Utility Service Policy (USP). While processing the
message some of the interceptors may require the
use of capabilities of external services (e.g. access
to a key-store or a policy authorisation service).
All information regarding the alternative services
available and the locations of these services are
contained in the Utility Service Policy.

• Capability Exposure Policy (CEP) is used for
publishing additional conditions for interacting
with a protected resource. The network entities
interacting with a protected resource are obliged to
provide the required data in addition to any other
application-specific data requested by the provider
of the application service.

ECP policies are deliberately separated from IRPs in
order to abstract away implementation specific detail.
For example, an ECP policy can state that encryption
of the SOAP message body is executed but there are
different algorithms that can be applied to do so. In
order to dynamically deploy the appropriate interceptor
in the chain that will correctly execute enforcement
actions the content of the message has to be analysed
and the actual encryption scheme will need to be
identified from the intercepted message. Once the
relevant enforcement actions and their configuration
parameters and order in which they will form the chain
have been identified, the IRP is loaded and inspected in
order to determine the references to the interceptor
implementing each enforcement action.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

2.2 Enforcement Process

The enforcement middleware defines different groups
of interceptors that fall into three generic types:
verification, transformation, and for invoking common
infrastructure capabilities.
Once a message is intercepted, a dispatcher analyses
the contents of the message, as this may convey
information required to determine which ECP policy to
use. For SOAP messages, ECP is typically determined
based on the reference endpoint of the targeted service
and optionally any other related information from the
message header.
Based on this contextual information and the state of
the enforcement middleware, the enforcement
middleware determines suitable ECP policy for
processing the message. Once the appropriate
interceptors have been identified and deployed in the
interceptor chain, the message is pushed through the
chain and each interceptor executes the corresponding
processing / enforcement action in a sequence (see
Figure 1).
After the message is processed, the interceptor chain is
dissolved in anticipation of another message being
intercepted. After the processing has completed, the
message is dispatched to the recipient.

Host

Enforcement
Middleware

Interceptor
Chain Dispatcher

Configuration
Policy

Interceptor Interceptor Interceptor

Interceptor Pool
E

nforcem
ent

P
oint

SOAP

Transport Protocol

Figure 1: Enforcement process overview

2.3 Deployment architectures

There are several alternatives in the deployment of the
enforcement middleware: at the same host (machine)
as the service it is protecting, as a network
intermediary, or in a distributed fashion (by
aggregating functionality of a set of enforcement
components distributed over a network). In the context
of this paper, we focus on the first alternative.

3. Virtualisation and Trusted Computing

Virtualisation and trusted computing technologies
provide system architectures and tools that allow
building of inherent security and trust mechanisms in
grid and web services hosting environment.
Virtualisation provides mechanisms to create partitions
that share the hardware resources but are isolated in its
working. This helps in improving the security of the
processes, as well as making the process distribution
efficient and optimises the use of limited resources.
Trusted computing allows cryptographic keys and
application data to be stored securely within the
machine hardware and provide mechanisms to check
the integrity of a remote machine.
In this section we give a brief summary of these
technologies.

3.1 Virtualisation

The concept of a virtual machine was first developed
by IBM in order to provide concurrent access to the
mainframe resources [6]. Each virtual machine (VM)
provided a completely protected and isolated
abstraction of the underlying hardware architecture to
the applications running inside it. In the recent years,
hardware virtualization has become a very popular
technology due to the fact that sharing of hardware
among multiple workloads reduces operating costs as
well as makes the system utilization more efficient [7].
In general, the process of virtualization allows the
creation and maintenance of multiple virtualization
layers providing each of them with an isolated and
partitioned access to the underlying hardware resources
like CPU, memory, input and output channels, and so
on. Virtual Machine Monitor (VMM) is the software
layer that provides this virtualization layer and
supports its creation, maintenance and teardown.
Commonly, the VMM layer is called the host and the
individual VMs are termed the guests. Figure 2
demonstrates the relationships between the VMM and
the VMs.
Different levels of virtualisation are possible, like the
instruction set architecture level virtualisation
implemented by QEMU [8] and others that provide full
instruction set level virtualisation,, to hardware
abstraction level virtualization as implemented by Xen
[9], which provides virtualisation at the hardware
abstraction layer. Detailed explanation of these
implementations are beyond the scope of this paper
and interested readers are referred to [10],[11].
The increased interest in the field of application and
web service technologies has made the hosting
providers of such services look for system architectures

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

to increase their system efficiency and consolidate their
hardware resources. Virtualisation has proved to be a
perfect fit for this requirement. Several recent research
works have been investigating on how virtualization
can be extended to support the on demand nature of
web service hosting requirements. SODA [12] is one
such architecture that virtualizes each service nodes by
running it within individual VMs on the hosted
machine. By designing their architecture in a ‘Master-
Agent’ setup they create the needed services on
demand, across several machines in the hosting farm.

Virtual Machine Monitor

Machine Hardware

Application

OS

Virtual Machine 1

Application

OS

Virtual Machine 2

Figure 2: Virtual Machine Architecture

Up to date, works in the area of virtualisation provide
only basic process isolation and system security that is
inherent in the virtualisation paradigm. The additional
security requirements for hosting web and application
services have not been addressed so far. In this paper
we use the security features of Trusted Computing to
address these requirements.

3.2 Trusted Computing

Trusted computing aims to provide open commodity
systems with certain desirable properties, usually
associated with high-assurance closed systems. For
example, such trusted platforms, while allowing
applications from different sources to run on the same
physical platform, allow third parties to determine
which software are running on the system. This
provides a degree of trust about the expected behaviour
of these systems.
The Trusted Platform Module (TPM) specifications
[3], defined by the Trusted Computing Group [13],
provide a mechanism to implement such a trusted
computing architecture by using (among other things),
a hardware root of trust. The TPM is implemented as a
chip that is attached to the motherboard of the
machine. It provides several cryptographic operations,
such as random number generation, asymmetric and
symmetric key encryption and decryption, signing,
secure hashing, etc. Each TPM has several
cryptographic keys built in.

Storage Root Key (SRK) forms the Root of Trust for
Storage and always resides in the non-volatile memory
of the TPM. When a TPM generates a key, it is
generated by its parent key and SRK forms the root of
this tree. Endorsement Key (EK) is used to uniquely
identify the TPM. Each TPM manufacturer provides a
certificate to the EK attesting the compliance of the
TPM to the specifications. The TPM produces
Attestation Identification keys (AIKs) that are linked to
the platform using certificates from the EK.
Certification Authorities (CAs) uses the certificate
issued by the EK and the manufacturer’s certificate of
EK to attest the AIKs.
These TPM chips are being increasingly deployed in
consumer level laptops / desktops, as well as industrial
level machines like the IBM eServer x366 [14].
Each TPM has at least 16 Platform Configuration
Registers (PCRs) that store measurement values
(usually hash values) of platform configurations. The
PCR values along with the AIKs can be used to attest
the state of a machine using the process of remote
attestation [15].

Virtual Machine Monitor

Machine Hardware

vTPM Manager

Application

OS with
Client TPM Driver

TPM Hardware

V
T
P
M

V
T
P
M

V
T
P
M

VM

Application

OS with
Client TPM Driver

VM

Figure 3: vTPM Architecture

Just like any other hardware, the TPM needs to be
virtualized in order to be used within a VM setup.
IBM’s work on vTPMs [5] is an excellent starting
point in this front (see Figure 3). The hardware TPM is
controlled by a vTPM Manager that resides in one of
the VMs. It also creates other vTPM instances that are
then associated with individual VMs. Each vTPM
instance performs the full set of TCG TPM
specifications, thus allowing each VM to us the vTPM
instances as if the VM had a direct control over the
physical TPM chip.
By generating an EK per vTPM, this architecture
allows each vTPM, and hence each VM that uses the
instance, to decrypt information using the private key
associated with the EK. It also enables the creation of
independent key hierarchy per vTPM.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

By using the trusted computing architecture for
deploying web services, one can not only increase the
security of the system (keeping the encryption key
secure in the TPM), but can also support the possible
requirement of consumers to verify the integrity of the
deployed system (using remote attestation).

4. Candidate Architectures for
Virtualisation of Enforcement Middleware

As described earlier in section 2.2, before a SOAP
message is delivered to a web service instance, it is
passed through a number of Policy Enforcement Points
(PEPs), which adapt their configuration at the runtime
based on the context surrounding the interaction and
the ECP policy.
When virtualising the web services framework, careful
consideration has to be given to the process of
virtualising the enforcement framework, in order to
preserve the semantics of the ECP policy at the VM
level.

M1 M2 M3

VM

PEP 1

WS1

VM

PEP 2

WS2

VM

PEP 3

WS3

Figure 4: Shared PEP/service partition model

One straightforward way of doing this is shown in
Figure 4. In this architecture each PEP is virtualised
along with the service it protects into separate VMs. It
may seem that such a process isolation would increase
the system security, However, since the web service
(along with all the components that constitute it) share
the same VM partition as the enforcement framework,
they will also share the same memory pages as the
enforcement framework. Hence a malicious component
could potentially attack the enforcement framework
through malicious buffer overflows or similar
mechanisms. In addition, this model would require
replication of the interceptor repository across each
partition in order to provide at runtime a secure non-
shared instance of every legal interceptor combination
(that corresponds to any applicable action) within that
VM. In turn, this increases complexity of the
management and configuration of the security
enforcement system.
An alternative approach that is a better match for the
PEP middleware is the architecture shown in Figure 5.

It contains a dedicated VM partition that holds all the
interceptors in the repository, as well as the individual
ECPs for each web service instance hosted on that
machine. Effectively, there would be a single PEP
deployment with different PEP configurations
depending on the targeted web service (instance).
It is clear that the repository containing the different
PEP configurations need not be replicated across the
individual partitions. However, this setup would
require that resources like physical memory be shared
between action chains that operate on different SOAP
messages directed for different web service instance.
We do not consider this being an issue, since it is
possible to use a shared resource environment at the
PEP level without affecting the security and integrity
of the application part of the SOAP messages, which
contains the payload for the WS instance.

M1 M2 M3

VM

WS1

VM

WS2

VM

WS3

Action chain for service instance

Common
PEP

Figure 5: Dedicated PEP partition model

Since the SOAP message consist of a number of XML
elements, the transformation/ manipulation of the
SOAP messages allows for different processing of
different parts of the message, as prescribed by the
SOAP specification [17]. Furthermore, WS-Security
[18] prescribes that arbitrary parts of the message can
be selectively protected (i.e. encrypted/ signed).
Therefore, the portion containing the application data
(typically the body of the message) can be encrypted
with a key that is accessible only by the virtualized
TPM of the service instance partition. If required, the
headers that need to be accessed by the common PEP
partition can then be encrypted, for a key that is
available within the TPM of this common PEP
partition.
Next section describes the partitioning architecture that
builds on the preferred model of the dedicated PEP as
proposed in Figure 5. Even though this model could
have potential scalability issues when the number of
WS VMs becomes very large, we expect it to be
advantageous compared to the model proposed in the

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

Figure 4 that would require interceptor repository to be
replicated across every VM. In addition, the model
presented in Figure 5 provides better separation of the
management of application and infrastructure
functionalities. Another reason for choosing the
dedicated PEP partition model is that it closely
resembles the vTPM architecture model, making it
easier to add trusted computing support into the
system, as explained in the next section.

5. Proposed Partitioning Architecture

Keeping in mind the design criteria discussed in the
previous section, we propose the partitioning
architecture shown in Figure 6 to support virtualised
web and grid services deployment. The architecture
preserves all the properties of the security enforcement
middleware framework (i.e. PEP), while enabling
independent TPM support for each of the web service
instances and the dedicated PEP.

WSn

Data

M1

v

T

P

M

v

T

P

M

v

T

P

M

vTPM
Manager

action chain +
config data of WS1

Interceptor
repository

TPM VM

A1

A1

A2

An

VM

Guest OS with

Client TPM Driver

WS1
components

WS1

Data

WSn
components

VM

TPM Hardware

TPM command flow

SOAP message flow

Guest OS with

Client TPM Driver

Virtual Machine Monitor
+ Base Service Manager

PEP VM

Figure 6: Proposed “TCP-PEP” partition
architecture for WS instances

The Base Service Manager (BSM) is a trusted piece of
software that manages the creation, maintenance and
teardown of WS instances and is logically located at
the same level as the type2 VMM3. When the hosting
environment is initialised for the first time, the BSM
instructs the VMM to create a dedicated VM partition
for the PEP, and populates it with the interceptor
repository.
The PEP partition is used in order to store any general
(i.e. service-instance-independent) configuration data
and components. In particular, the interceptor pool of
the enforcement middleware, the interceptor reference
policy, and the utility service policy are stored there.
The run-time engine of the enforcement middleware

3 VMM runs within level 2 protection ring (OS) with guest OS
running at level 3 (applications)

can access the data and components in this partition.
Also authorized security infrastructure administrators
may obtain access to information in this partition by
using the programmatic interfaces as explained in [2].
At the time of the web service deployment, an
administrator provides the application files and the
Enforcement Configuration Policy for the web service.
When requested by the administrator to instantiate a
web service, the BSM first instructs the VMM to create
a new secure VM partition with a dedicated vTPM.
This provides a secure execution environment for the
web service instance. The BSM then instructs the PEP
to create a ‘base’ configuration file for the service,
which combines external address of the service
instance (i.e. EPR – end point reference), VM identifier
of the partition where the instance is hosted, and the
reference to the appropriate Enforcement
Configuration Policy. This allows the PEP to apply the
correct policy to the incoming messages at runtime
whilst channelling them to/from the appropriate VM.
Then the WS instance is created in the newly
virtualised partition.
The ECP data as well as all general purpose
configuration policies, i.e. interceptor reference policy
(IRP) and the utility service policy (USP) of the
enforcement middleware are saved within the PEP
partition while all the data (including service instance
state) that is received or created by the service instance
is isolated within the WS’s VM partition.
Once the WS instance partition has been created with
its own virtual TPM, the vTPM creates relevant key
pairs (EK, SRK, AIKs etc.) for the WS instance. The
public key of the EK pair is then advertised as the
public key of the WS instance. Any data sent for the
WS instance can then be encrypted with this public
key; an additional, “signature” key-pair can be
created4. In general, an arbitrary number of the
“crypto” material, secret(s) etc. can be created for
various purposes and protected by the vTPM keys.
The AIKs, together with the PCR values of the vTPM,
can be used by the web service customers to perform
remote attestation of the VM’s state. This is
particularly useful for security auditing and traceability
of the creation and management of system partitions
and TPM virtualisations.
When a SOAP message is intercepted, it is sent to the
PEP partition where the endpoint address (EPR) and
other declared identification meta-data is used for
deciding which enforcement configuration policy
(ECP) to apply as described in [2]. The PEP uses the

4 In reality, this will yield more complex scheme due to the fact that
web services would use XML – style assertions to request or provide
authentication information. However, the corresponding encryption /
signature EK keypairs can be used to secure this information at the
vTPM.

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

information specified in the ECP to collect the
appropriate handlers and to create the handler chain
through which the message is then passed.
Once the PEP has performed the necessary
enforcement and checks at its level, the SOAP message
is passed into the BSM, which uses the EPR data in the
message to route the message to the appropriate WS
instance partition. Since the data for the WS instance
can be decrypted only with a key encrypted with the
partition’s vTPM specific key, it can be guaranteed that
the data is not accessible outside the service partition.
The web service instance however needs to have
access to read, as well as other (management) services
to edit its configuration file contained within the PEP
partition. Since an uncontrolled cross-partition data
access process should not be allowed, a standard
interface is defined that allows the WS partition to read
its configuration file. Since the WS partition is not
allowed to read the file directly, the configuration
changes have to be first conveyed to the PEP partition
through the defined interface via the BSM. Using the
AIK of the WS partition’s vTPM to sign the request is
enough to prove the authenticity of the request and
access the configuration file via an authorised process
located in the PEP partition. Note that editing and
modification of the configuration file should not be
allowed by the WS itself. This is the responsibility of
the management services that are normally remotely
hosted, so this would typically be a web services call to
the management interfaces of the PEP (see section 2
and reference [2] for more information on the PEP
manageability).
The hosting platform provider considers the VMM and
the TPM VM trusted, and the WS components
(including the interceptor chains) as non-trusted. An
attack targeted against a specific WS component is
confined within the WS VM and does not affect any
other WS instance on the same physical machine nor
the core trusted part of the hosting platform. Similarly,
since the interceptor chains reside within a separate
PEP VM, a malicious or buggy interceptor provider
would not endanger the WS operation and data.
The vTPM's secret key used to encrypt data in the WS
VM provides confidentiality. The remote attestation
functionality of the TPM (and vTPM), which allows a
remote user to verify the status of the hosting
environment, provides integrity. The use of VM
architecture allows for the migration of the WS
instance during its execution (should it be required),
therefore contributing to the availability of the
architecture.

6. Related Work

Although there is significant existing work on the
subject of virtualisation, its application in the web and
grid service framework is less studied. SODA [12] is
one of the few systems that use virtualisation
technology to create on-demand VM partitions to
improve resource utilisation. However, they do not
consider the policy enforcement framework and
security in general in their design. Daonity [16] uses
Trusted Computing technologies to bolster the trust
model of grid service framework by enhancing the
security of credential and membership management.
However they too do not consider the implementation
of the policy enforcement framework nor about the
security and integrity of web service components.
IBM’s vTPM [l] project proposes and implements
architecture to virtualise the TPM hardware across
VMs. Their work also provides mechanism to migrate
the vTPM along with the rest of the VM in an efficient
manner. However they do not consider the use of
vTPM within a web or grid service infrastructure. The
architecture proposed in this paper uses and also draws
inspiration from the vTPM design.

7. Conclusion

In this paper we propose an architecture for virtualising
the policy enforcement framework of web services. By
incorporating the functionalities provided by the
trusted computing technologies with the isolation
properties of virtual machines partitions, our
architecture enhances the security and integrity of web
service infrastructure, in particular the crucial
functionality of the dynamic policy enforcement
framework.
We consider two alternative architecture designs and
choose the one that can more efficiently support our
requirements for secure provisioning of multiple web
services in a single hosting environment. The key idea
is to separate policy enforcement from application at
the virtual machine level, so that applications cannot
compromise security mechanisms.
In addition, the architecture provides separation of the
management of application and infrastructure
functionalities. This provides a baseline for the secure
service hosting and operation in federated
environments, where providers of the applications
(ASPs), hosting environments, and security services
may be different entities, hence requiring separation of
control. For example, host provider may wish to limit
maximum number of the partitions in order to deliver
committed quality of service, ASPs to be able to
upgrade their application functionality without having

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

to deal with managing its protection, and the security
service providers to enforce the application security
based on the higher level agreements established with
the ASPs5.
The system environment assumed in the architecture
builds on top of the “TCG Generic Server
Specification” proposal [4] of the Trusted Computing
Group, which increases the confidence that it can be
assumed a realistic production environment.
Next stage in this work is experimental implementation
of the proposed architecture for securing interactions
on the WS-based B2B Gateway described in [21].

Acknowledgments

Some aspects of the work reported in this paper are
funded by EU IST integrated projects TrustCoM [22]
and BEinGRID [23].

References

[1] Djordjevic I., Dimitrakos T., Romano N., Mac Randall
D., Ritrovato P.: Dynamic Security Perimeters for Inter-
Enterprise Service Integration. Future Generation Computer
Systems, the International Journal of Grid Computing:
Theory, Methods and Applications, Elsevier B.V. 2007,
Volume 23, Issue 4, Pages 633-657 (May 2007). URL:
http://www.sciencedirect.com/science/journal/0167739X
[2] Maierhofer A., Dimitrakos T., Titkov L., Brossard, D.:
Extendable and Adaptive Message-Level Security
Enforcement Framework, In proceedings of the International
conference on Networking and Services, (ICNS '06), Paolo
Alto, July 2006, ISBN: 0-7695-2622-5
[3] “TCG Specification Architecture Overview”, Trusted
Computing Group, Revision 1.2, April 2004,
https://www.trustedcomputinggroup.org/
[4] “TCG Generic Server Specification”, v 1.0 revision 0.8,
Trusted Computing Group, May 2005,
https://www.trustedcomputinggroup.org/
[5] Berger S., Caceres R., Goldman K.A., Perez R., Sailer
R., van Doorn L.: “vTPM: Virtualizing the Trusted Platform
Module”, IBM Research Report RC23879, February 2006.
[6] Creasy R.J.: The Origin of the VM/370 Time-Sharing
System, IBM Journal of Research and Development,
25(5):483, 1981.
[7] Figueiredo R., Dinda P.A., Fortes J.: Resource
Virtualization Renaissance, IEEE Computer Magazine,
38(5):28-31, 2005.
[8] QEMU Macine Emulator and Virtualizer,
http://fabrice.bellard.free.fr/
[9] Xen Virtual Machine Monitor,
http://www.cl.cam.ac.uk/research/srg/netos/xen/

[10] Goldberg R.P.: Survey of Virtual Machine Research,
IEEE Computer Magazine, 7(6):34-45, 1974.

5 Middleware architecture that can benefit out of this concept is
being developed in the context of the BEinGRID project [20].

[11] Nanda S., Chiueh T.: A Survey of Virtualization
Technologies, Research Proficiency Report, Stony Brook,
ECSL-TR-179, February 2005.

[12] Jiang X., Xu D.: SODA: A Service-On-Demand
Architecture for Application Service Hosting Utility
Platforms, In proceedings of 12th IEEE International
Symposium on High Performance Distributed Computing,
pp. 174, 2003.

[13] Trusted Computing Group,
https://www.trustedcomputinggroup.org/

[14] IBM eServer x366, http://www-
03.ibm.com/servers/eserver/xseries/x366.html

[15] Sailer R., Zhang X., Jaeger T., van Doorn L.: Design
and Implementation of a TCG-based Integrity Measurement
Architecture, In proceedings of the USENIX Seceurity
Symposium, 2004.

[16] Mao W., Yan F., Chen C.: Daonity: Grid Security With
Behaviour Conformity from Trusted Computing, In
proceedings of the First ACM Workshop on Scalable Trusted
Computing, pp. 43-46, ISBN:1-59593-548-7, 2006.

[17] SOAP Version 1.2 Part 1: Messaging Framework, W3C
Recommendation, M. Gudgin, M. Hadley, N. Mendelsohn,
J-J. Moreau, H. Nielsen, 24 June 2003; see
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[18] OASIS Web services security TC. WS-Security 1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf

[19] Dimitrakos T., Titkov L., Maierhofer A.: Message
Processing Methods and Systems: a method and system for
adaptive SOAP-level security enforcement. PCT application
No. GB2006/004088; to be published September 2007

[20] Leiva R.G., Rodríguez I.H., Álvaro D.M., Warren P.,
Djordjevic I., Dimitrakos T., Romano N., Biette M.: A Grid
Computing for Online Games. In proceedings of Game
Design and Technology Workshop 2006 (GDTW’06),
Liverpool, UK, November 2006.

[21] Dimitrakos T.: Securing application service exposure &
integration in B2B collaborations. In business track of
ECOWS 2006, the 4th IEEE European Conference on Web
Services, Zurich, December 2006.

[22] TrustCoM project website: www.eu-trustcom.com
[23] BEinGRID project website: www.beingrid.eu

2007 IEEE International Conference on Web Services (ICWS 2007)
0-7695-2924-0/07 $25.00 © 2007

