National University
of Singapore

ANUS
CS 5212 Software Project Management

Project Report — Research Paper

STUDY ON MANAGEMENT OF
OPEN SOURCE SOFTWARE PROJECTS

By
Krishnan Nair Srijith (HT006458L)
(srijith@comp.nus.edu.sg)
October 2002

ABSTRACT

The ideology of open source software development is spearheading a shift in the way we
approach the process of software development. Not only is it changing the perception of costs
associated with projects, but also the management aspect of these development processes. The
management of open source projects is very different from a traditional project due to the
inherent nature of the objectives, team structure and the benefits involved. Several studies have
examined various issues related to the management of these projects. However there is alack of
a study that puts together al the findings so that the interrelationships between these findings
can be explored. This study tries to overcome this shortcoming and present the findings of other
studies in a comprehensive manner and at the same time look at the entire process from a bird’
eye point of view.

I ntroduction

Bazaar model
Requirements management
Configuration Management
Effect on Brooks Law
Leadership

Conclusion

Reference

TABLE OF CONTENT

12

14

17

18

“Their community is very, very good, and we're hard at work trying to follow that model”
Jim Allchin, Group Vice President, Microsoft

1. Introduction

Even though open source software (OSS) projects have been producing quality, reliable and
stable products for severa years now, only recently have interest grown in the academic circles
to study the process, due to the success of severa OSS poducts that have received wide spread
usage and have become market |eaders in their fields.

The Open Source Initiative (OSI) [1] proposes a definition for “Open Source Software” as,
among other things, software that, “include(s) source code, and must allow distribution in source
code as well as compiled form”, does not “restrict any party from selling or giving away the
software as a component of an aggregate software distribution containing programs from several
different sources. The license shall not require a royaty or other fee for such sale.” At the time
of writing of this report, 35 different licenses have been OSl certified as open source. There
seems to be some confusion between the phrases “free software” and “open source software’.
Free software is a more restricted subset of OSS and is one of the 35 licenses approved by OSl.
In this study, any project that uses a license approved by OSl is considered as an OSS project.

Severa studies have been conducted to investigate the characteristic and nature of development
of software using the OSS paradigm. These studies have reported various interesting and
sometimes contradicting results. This report aims to survey some of these studies and report
their finding in a comprehensive manner.

Section 2 examines the “Bazaar” model of open source projects and its implications. The
requirements management process of OSS projects is studied in section 3 and configuration
management in section 4. The effect of OSS projects phenomenon on Brooks Law is studied
next in section 5. Leadership plays an important role in the project management and is looked
into Section 6. Section 7 summarises the discussions in the paper and concludes with the major
findings.

“...Linux community seemed to resemble a great babbling bazaar of differing agendas and approaches...”
Eric S. Raymond, [2]

2. The Bazaar modd

One of the most well know and earliest work that tried to study and classify the working of OSS
projects was “ The Cathedral and the Bazaar” by Eric S. Raymond. In 1999, this work along with
other writings on Eric Raymond was published as a book “The Cathedral & the Bazaar” [2]. In
this momentous paper, Raymond compares the working of a closed source, proprietary project to
that of a highly organised Cathedral and OSS prgects to that of a chaotic Bazaar. Based on the
example of one of the most successful OSS project Linux, and his own experience with the
development of the mail utility Fetchmail [3], Raymond proposes some interesting and some
times controversial ideas, whch he calls “lessons’. Some of these “lessons’ that have direct

relationship with software project management concepts or theory are listed below:

» “Every good work of software starts by scratching a developer's personal itch.”

This “lesson” is a characteristic of most OSS projects. Most OSS project was started by
individuals or groups either because a product that met their functional specifications were
not available or were too costly to be used. This is similar to the conclusion reached by U.
Asklund and L. Bendix in [4]. They say, “OSS projects are run by developers for developers

and there is no interest or resources for bureaucratic overhead”.

» “Release early. Release often. And listen to your customers.”

This is one of the most important differences between the Cathedral model of software
development and the Bazaar style. In the Cathedral style, developers work in isolation and
release their codes only when it is “totally finished”. However the Bazaar model differs in
releasing frequent revision to their codes. This process does two things at the same time. It
helps in weeding out unstable software fast, thus making the user happy, and at the same
time keeps the devel opers motivated.

4

“Given enough eyeballs, al bugs are shalow.”

Raymond dubs this as “Linus Law”, after the primary author of Linux operating system
(OS) codes base. It basically means that as long as you have enough people looking for bugs,
amost all of them can be caught. This is another difference between the two models. Since
the products developed using the Cathedral model is closed, not many are in a position to
look for the bugs. The bugs in these projects are thus harder to find and these coupled with
the long wait between releases creates dissatisfied users.

However Nikolai Bezroukov of Fairleigh Dickinson University seems to disagree with this
“lesson”. He states in [5] that whatever be the number of developers looking at the codes,
bugs that are architectural in nature cannot be debugged. To add on to that, my personal
experience shows that even though the number of people who might read through the codes
is higher than that for a closed product, most of these people are not skilled enough to spot
and debug the bugs that might exist.

Brooks Law does not apply to Internet-based distributed development environment.

Raymond questions the applicability of Brook’s Law for Linux and other Bazaar based
projects. He states “ Brooks's Law has been widely regarded as a truism. But we've examined
in this essay many number of ways in which the process of open-source development
falsifies the assumptions behind it—and, empirically, if Brooks Law were the whole picture
Linux would be impossible” Raymond puts forward the possibility that using the power of
“gift-based”, “ego less progamming” and cheap communication, the effect of Brooks law
can be diminished. He argues that if Brooks law was true in all cases, including Linux, the
hundreds of volunteers who help in the development of Linux would have reduced the pace
of development and increased costs, both of which have not occurred. The appropriateness
of Brooks Law in OSS project will be discussed in more detail in Section 5.

Good programmers know what to write. Great ones know what to rewrite (and reuse).

The code sharing idedogy of OSS projects makes it easy to reuse codes and thus save

enormous time and effort, which would otherwise be spent in reinventing the whesl.

“Open software development does not adhere to the traditional engineering rationality found in the legacy of
software engineering life-cycle models or prescriptive standards.”
W. Scacchi, [6]

3. Requirements management

The regquirements management process of OSS projects is different from that of normal closed
source projects. W. Scacchi studied the process of requirements management of four OSS
projects in [6] and this section of the report details the findings of the paper. It was identified
that there are no strict and formal ways of requirements management in OSS projects. Rather,
they are ‘implied activities that are performed, as a part of discussion on what software should
do. The study analyses the various requirements management process as follows:

» Requirements dlicitation

The study found out that requirement dlicitation is done in a very informa manner, either
through emails or bulletin board postings. Most of the time, these requirements are asserted
without any specific reference to other supporting documents. One of the reasons why an
informal method of requirements elicitation can work is because of the fact that there is a large
overlap between the developer population and user populations. It was also reported that no

documentation of requirements elicitation process was found in the projects anaysed.

» Requirement analysis

It was found that the requirement analysis did not involve any automated analysis or formal
reasoning as required by Nuseibeh and Easterbrook in [7]. Rather, they are done via technica

narratives and using prior knowledge gathered during the work on similar projects.

» Requirements specification

It was found that requirements for OSS project were specified in medium that referred to or
linked to email and bulletin boards. These preliminary specifications are then scrutinised by the
developers and then condensed into functional and non-functional specification for the system.
An interesting characteristic of OSS projects is that there is usualy no recorded formal

specification and they are not described using any notational schema or symbols.

» Requirement validation

Since the requirements are never specified formally in a document format or using symbolic
methods, there is no forma way to validate these requirements. Rather, the study found out that
the informa process of requirements validation was more of a by product of how OSS
requirements are described, discussed and linked to other informal system descriptions and

implementations.

» Regquirements communications

Even though, in al the previous processes of requirements management, the open source
projects seem to be less forma than their closed source commercial ones, the process of
communication of the requirements to the various members of the team is more well developed
in open source projects. It was seen that using the online medium of emails, websites, bulletin
boards and shared source code directories, the members could be easily updated on the
requirements of the project. This open nature of the specifications allows even outsiders to trace

the development and evolution of the project requirements.

In short the study states that there does not exist any forma method of requirements
management associated with open source projects. Because of this, the study designates this
process as “software informalism”. Rather than rely on hard formaism to denote the
requirements of a project, open source projects rely on aweb of narratives to formalise, anayse,
validate and communicate their requirements to fellow project members and the rest of the
society. Even though the requirements management process is informal, it 5 more open than
traditional approach and seems to still fulfil the requirements of the process.

“Change management is probably the weakest part of OSS process’
U. Asklund, L. Bendix, [4]

4. Configuration Management

Most open source projects are run and managed by devel opers themselves and hence studies on
configuration management have been conducted from the point of view of the developers.
Asklund and Bendix studied the configuration management process in open source projects in
[4]. Instead of using the frame work of configuration identification, control, configuration status
accounting and audit, which is generally used when studying typical CS project, they looked at
configuration management from the point of view of the developers and used a different
framework to analyse the process. They used a framework that looks from the angle of tools
used in the configuration of project so that they could obtain a*developer bias’ as given below:

» Version Control

Most of the developers of open source projects seem to favour the usage of the tool Concurrent
Version System (CVS) [8] as a version control system. All versions and branches are kept at a
central repository and developers who want to work on it have to “check out” the codes from
thisrepository and work on it in their own local workspace. The work can be done locally and
the developer need not be online during this period. When the coder has finished his coding, he
checks the code back into the CVS system. Write access to these repositories are ganted
sparingly in some project and generously in others.

On the status of version control on the Linux project, the study states “Linux, however, use no
tool at al for version control. They simply put the code of each version of the system in a
separate directory and apply contributions and patches to a ‘latest’ directory” [4]. However,
literature available on various interviews and email copies suggests that this is not the case. The
confusion arises because of the fact that the genera public does not have any read or write
access to the version system used by most of the moderators of the Linux project. According to
various emails [9] sent by Linus, it is clear that Linus and a lot of other kernel moderators use
the product BitKeeper [10].

» Build Management

Since the usage of the version management tool creates local workspaces, build management is
easier as complex issues like linking files and objects from different physical locations are
avoided. Tools like ‘make’ [11] can be used to build the codes. Configuration files to use these

tools are also part of the files that can be downloaded onto the local workspace.

» Configuration Selection

In most of the OSS projects studied by the paper, configuration selection was not an issue
because of the fact that only the latest releases are maintained. Even where one stable and one
developmental releases are being maintained, as in the case of the Linux project, they are, for al
practical purposes run as two different processes and there is not much file and configuration

sharing between the two projects.

» Workspace management

The CVS tool used enables easy workspace management for the developers. It creates
workspaces locally when codes are checked out and the check in of the modified codes is
similarly a seamless operation. However when a developer does not have direct write permission
to the code repository, he has to submit his changes as patches to the moderators and they check

in the code after review.

» Concurrency control

CVSis not primarily meant for concurrency management. It does not have the inbuilt ability to
lock files that are checked out. So what it does is that if two users checks out the same piece of
code, and after the first guy has made changes and submitted them back, the second coder will
be forced to check out the modified version of the code and then integrate his changes into this
modified code. When the system cannot do the merge automatically, manual intervention is

required. When a conflict does arisg, it is usually solved usingother communication mediums.

» Change Management

In a norma CS project, the process of change management goes as follows. The change is
proposed and then it is documented formally and reviewed to decide on its efficacy and
technical merit. If it is approved, the change document is passed on to the developers who then
implements them and then beta testers test the changes to make sure that they works well.

However, open source projects differ fundamentally from CS project in the above-mentioned
process. Since the developers or any other person who wants a functionality into the software
can propose changes, instead of waiting for the approval, the changes are usually proposed,
documented (in email or bulletin board postings) and then implemented before t is taken up for
review. The moderators or the coordinators does the evaluation and if approved, it is verified

and checked into the proprietary.

This can create long lasting un-updated and unfulfilled “wish lists’. Developers choose which
changes or whish list features to implement. There is usualy no control or responsibility
distribution process. As the authors mention “OSS projects would probably benefit from an
updated wish list and a better traceability between change request (wish) and the actual changes
made to the code”. Another problem that can be identified is that the moderators have a large
responsibly of protecting the code base form bad patches. However, at the same time, if he is
slow in verifying and approving (or discarding) the code changes, he may become the bottleneck
and developers may get disillusioned.

On the other hand, even though traditional CS projects emphasise on classifying and prioritising
changes requests, there is no inbuilt way in which the changes implemented can be checked for
bad implementation issues. As long as the change feature works, the code is approved and no
further verification is done. Traditiona CS projects can adopt the practise of the OSS
community and try to insert an extra step of proper review process after the changes have been

implemented.

In short, it can be conjured that the change management of OSS projects are informal and

initiated mostly by developers who have some personal interest in the particular changes. Due to
the use of modular architecture and tools like CVS, workspace management and distributed

work is easily managed. However, the change management process does put the moderators

10

under pressure and heavy responsibility. At the same time, because OSS developers do not

support a lot of kranches, configuration management becomes easier.

11

“1 don’t know how you take a rule about ‘ making a project late’ and apply it to development
which haslittle formal scheduling”
Erik Troan, author of Red Hat RPM

5. Effect on Brooks Law

Fredrick Brooks, who headed the team at IBM that created the first large scale computer
operating system in 1960s, in his book “The Mythical Man Month” [12] states that, put Ssmply
“Adding manpower to a late software makes it later.” This is known as Brooks Law. As
mentioned in Section 2, Eric Raymond in [2] declared that Brook’s Law was obsolete, if not
smply limited. However, in the later editions, he did tone down the implication a bit by stating
“l don't consider Brooks Law ‘obsolete’ any more that Newtonian physics is obsolete, just
incomplete. Just as you get non-Newtonian effects at high energies and velocities you get non-
Brooksian effect when transaction costs go low enough.” [2].

Paul Jones of Metal_ab tries to examine this issue in greater details in the work “Brooks Law
and open source: The more the merrier?’ [13]. An interesting twist to this issue is the comment
by Erik Troan, the developer of the popular Linux distributor Red Hat's package manager. He
says “| don’'t know how you can take a rule about ‘ making a late project later’ and apply it to the
development which has little formal scheduling”. This basically points to the fact that there are
no hard deadlines to be followed by open source projects. Richard Stallman, President of Free
Software Foundation [14] agrees. “GNU projects rarely have a schedule’.

Jamie Zawinski, a developer of the Netscape, XEmacs and Mozilla, provides another interesting
perspective in the same paper. He agrees to the notion that OSS projects do violate Brooks' law,
but only because of the murky definition of ‘programmer’. He points out the fact that even
though hundreds of people are involved in an OSS project, most of them are just fixing bugs and
doing secondary work. “If you have a project that has five people who write 80% of the codes,
and a hundred people who have contributed bug fixes or a few hundred lines of code here and
there, is that a ‘105-programmer project”. So when someone says that OSS projects do break
Brooks Law by showing that even when a hundred odd individuals help in the project by either
finding bugs or contributing small pieces of code, they may still be missing the point that

ultimately there is no change in the number of core developers involved in the project.

12

Nikolai Bezroukov in [5] gives another mint of view that the non-applicability of the Brooks
Law is only applicable in cases of those open source projects where almost al architectural

problems have been solved and a working prototype of the project has aready been developed.

13

“Never inthe field of human conflict has so much owed by so many to so few”
Winston Churchill

6. Leadership

The leadership structure of open source project teams is different from that of any other
traditional organization. Usually there is a single leader or a committee of developers who arein
charge of approving the patches and providing direction to the project. There will be other
developers who are in charge of separate modules of the project and then the contributors to
these modules. The structure thus formed paces a lot of responsibility on the leader(s). Hence
this section studies the leadership of open source project.

In “The Simple Economics of Open Source’, Josh Learner and Jean Tirole [15] identifies four
points a leader needs to do in order to create a viable project and lead it through to success:

» Provideavision

[15] states that a leader can provide a vision by assembling a critical mass of code and if
possible a working prototype. Another thing he has to do is to make sure that there is enough
work for the developers to catch their attention. Linus Torvald's initial posting announcing the
birth of Linux is an example of such a beginning. In the posting Linus did provide a significant
amount of working code, but at the same time there were more thanenough functionalities still
to be developed, for anybody who was interested in, to step in and develop.

However, in [16], Kasper Edwards differs subtly by arguing that it is not the leader who
provides the vision, but the software/code that the leader presents that offers the vision. To prove
the argument, he references the Linux and Apache project. In both the cases, a major re-write of
the code base was required, which introduced functionalities that were not evident from the
initial statement of purpose as presented by the leaders. It was the vision of the developers that
were mirrored in these changes. Based on this, Kasper states “It is the vision of what the co-
developers wants from the software that triggers the programming effort”.

Whatever be the exact medium of providing the vision, it is clear that the leader has to make the

initial contribution to the code base and the project should be challenging enough to attract

enough developers.

14

» Divide project into smaller and well-defined tasks

A leader should try to make the structure of the project as modular as possible. Thisis a way to
actively delegate work to others in an organised manner. However, Kapser asserts that this will
just create more work for the leader. He feels that the leader of the project should not be
responsible for defining modules and tasks. Rather, a leader has to only encourage the creation
of modules and extra functionalities by designing the initial program in such a manner. Kasper
feels that if the leader decides on the actual components and extra modules to be developed and
then assign people to these modules, the “fun” of programming is lost and that developers will

|oose interest.

» Attract Programmers

Learner and Tirole are of the view that for a project to succeed, the leader should try to attract
developers who can take up the implementation of various modules of the project. To attract
these programmers, there should be a working piece of code as well as enough challenging
undone work. The leader should try and communicate his vision for the project to try and attract

the programmers.

As in the case of vision, Kasper is of the view that the leader per-say cannot attract the
developers by just communicating the vision. A normal way in which a developer is hooked on
to an open source project is as follows. He hears about the project either through email, bulletin
board message or through website news. He then goes to the project website, reads as to what
the project is trying to do and then downloads the code. He then goes through the codes and the
present implementation. If he feels that there is something he wants done in that particular
project or if he feels that the project is going to be a good challenge to him, he will volunteer as
a developer. It is rarely the “vision” of the leader that attracts the developer. It is the code that
speaks, not the leader.

» Keep the project together

Since the codes for an open source project is available for anybody to see and use, there is

nothing preventing a dissatisfied developer from creating another version fork of the project.

15

This has happened in alot of open source projects. BSD Linux is a project that resulted from the
forking of the original AT&T Unix project.

The two factors that are pointed out in [15] that can prevert forking of OSS projects are trust in
the project leader and loss of economics from a split. Thus a project leader can play a vita role
in making sure that a project fork does not happen. He has to make sure that patches and
contributions are not being @layed because of him becoming the bottleneck. However, at the
same time he should not let the quality of the code base suffer by approving unwanted code
contributions.

The developers should trust the objectives of the leader and should believe that the acision he
makes is based of technical and design considerations and not based on ego driven, political or
commercial issues. The leader should try to make the change management process as transparent
as possible. In the case of Linux project, the merits ¢ each contribution are discussed over
emails and other medium and are available for anybody to follow. This makes it easier for the
developer to trust the leader and the process involved.

An issue considered in [17] is the burnout of a project leader. The paper notes that due of the
highly centralised structure that might evolve in the project, when the project becomes a success
and scales beyond the capacities of a single person to coordinate. This might lead to continuous
stress and final burnout of the leader(s).” Burnout is the price of becoming a media darling.” This
has to be prevented. One way to do so is to make sure that trivial issues doe not have to go al
the way to the leader, but be decided by relatively lower-level coordinators. Linux is an
example. “My workload is lower because | don’'t have to see the crazy ideas’, Torvalds said. “I

see the end point of work done for a few month or even a year by other people’.

Kasper fedls that it might be better to abandon the use of term “leader” in OSS development for

amore correct usage, “maintainer”, since according to Kasper, that is what he is.

Summing up, a leader of an OSS project need to make sure that he provides a vision, attract

programmers, make the project modular and prevent forks. At the same time he has to make sure
the structure of the team is such that it can scale when the project becomes a success and he is

not in danger of suffering from a burn out.

16

7. Conclusion

In this paper we looked at various aspects of open source software project management. We
concentrated on issues related to requirements management, change management and |eadership.
We aso looked at the Bazaar model of open source projects and studied how the bazaar model
seems to outplay Brooks Law.

We found out that open source projects are very informa in their requirement management
process and rely heavily on informal mechanisms like email and bulletin board postings to
power the process. Similarly, change management too is informal. We looked at some basic
problems associated with the informa nature of the project management. Leadership and the
role of a leader in OSS projects were also studied in the report. It was found that OSS |eader
have a high chance of burnout as the project grows and the administration pr ocess has to be
streamlined to prevent this from happening.

We looked at the arguments that OSS projects seem to outplay Brooks Law and found out that

it generaly is not the case. The appearance is brought about by the loose definition of a ‘team”
in these projects.

17

References

[1]
[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

‘Open Source Initiative OSI”, http://www.opensource.org, 2002.

Raymond, E., ‘ The cathedral and the bazaar: musing on Linux and Open Source by an
accidental revolutionary’, O’ Reilly and Associates, Sebastopol, 2002.

‘Fetchmail’, http://www.tuxedo.org/~esr/fetchmail/, 2002.

Asklund, U., Bendix, L., ‘A study on configuration management in open source software
projects’, |EE Proceedings — Software, VVol. 149, No. 1, pp 40 — 46, February 2002.
Nikolai Berroukov, ‘A second look at the cathedral and the Bazaar’, First Monday, Vol.
4, No. 12, December 1999. http://firstmonday.org/issues/issue4 12/bezroukov/

Scacchi, W., ‘Understanding the requirements for developing open source software
systems, |IEE Proceedings — Software, Vol. 149, No 1, February 2002.

Nuseibeh, R., Easterbrook, S., ‘Requirements engineering: a roadmap’, ACM and |EEE
Computer Society Press, 2000.

Berliner, B., ‘CVSlIl: pardlezing software development’, Proceedings of USENIX
Winter, 1990.

Linus Torvalds, ‘Re: [PATCH] Remove Bitkeeper documentation from Linux tree’,
http://lwn.net/2002/0425/alideol ogy -sucks.php3, April 2002.

‘BitKeeper’, http://www.bitkeeper.com, 2002.

Feldman, S.I., ‘Make: a program for maintaining computer programs, Software —
practise and experience, 1979.

Brooks, Frederick P., ‘The Mythica Man Month: Essays on Software Engineering’,
Addison-Wesley Pub Co, 1974.

Jones, P., ‘Brook's Law: The more the merier?, IBM Developer Works, 2000.
ftp://lwww6.software.ibm.com/software/devel oper/library/merrier.pdf

‘Free Software Foundation’, http://www.fsf.org, 2002.

Lerner, J., Tirole, J. "The Simple Economics of Open Source," Working Paper 7600,
National Bureau of Economic Research, 2000.

Edwards, K., ‘“When Beggars becomes choosers', First Monday, Vol. 5, No. 10, October
2000. http://firstmonday.org/issues/issue5_10/edwards/

Bezroukov, N. "Open Source Software as a Special Type of Academic Research," First
Monday, Vol. 4, No, 10, 1999. http://firstmonday.org/issues/issued4_10/bezroukov/

18

