
Secure Web Service Federation Management using

TPM Virtualisation

Srijith K. Nair
1*†
, Ivan Djordjevic

2*
, Bruno Crispo

1,3
, Theo Dimitrakos

2

1
 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

2
 SOA Security, Security Research Centre, British Telecommunications, UK

3
 DIT, University of Trento, Italy

{srijith, crispo}@few.vu.nl, {ivan.djordjevic, theo.dimitrakos}@bt.com

ABSTRACT
Web Services and SOA provide interoperability and architectural
baseline for flexible and dynamic cross-enterprise collaborations,
where execution and use of the participating services contributes
to the common objective. Relationships within these
collaborations are complex, with services joining and leaving
throughout the life cycle, or the same services being offered in
several collaborations simultaneously. This provides strong
requirements for federated security, where integrity and
confidentiality of the collaboration must be maintained through
membership control, security policy enforcement and separation
of web service instance interactions in different collaborations.

In this paper we propose a new Web Services (WS) framework for
managing and controlling WS interactions in a federated
environment, leveraging on platform virtualisation architecture
and the functionalities provided by trusted secure hardware. The
framework allows configuring policies that define collaboration
membership, and enforce access to the collaboration per-WS
instance. In addition, since the access to the configurations is
restricted, it provides master-slave model where only authorised
administrative entity can modify any of the above - either at the
deployment or at the execution time. Some of the benefits of the
proposed approach are: fine-grained external exposure of WSs, a
flexible model for group membership control and revocation and
hardware-enabled secure virtualised system providing functional
process isolation and strong data security.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

General Terms

Security, Design

Keywords
Web Services, Security, Federation, Membership Management,
Trusted Computing

1. INTRODUCTION
1.1 Background
With the adoption of Service Oriented Architectures (SOA), the
advantages of service virtualisation are becoming prominent. It
describes an advanced way of cross-enterprise integration of
application services and virtualisation of the (cross-organisational)
computational environment where these services are hosted and
executed. We call this a Virtual Hosting Environment (VHE).

VHE refers to the federation of a set of distributed hosting
environments for execution of an application and the possibility to
provide a single (logical) access point to this set of federated
hosting environments. In addition to the application services, this
virtualised service bundle needs to include a number of
infrastructure services (potentially provided by a third party) for
managing non-functional aspects of the application. From the
perspective of a VHE consumer, the latter are transparent. VHE as
such requires two main security services − trust federation and
security enforcement.

The basic federation model [1] assumes the existence of separate
domains (trust realms) which can be identified by a common
internal policy and a security administrator who controls the
domain membership by issuing/revoking tokens to the entities that
live inside the domain. The domain tokens (which can be seen as a
WS equivalent of public-key certificates) are typically derived
from the root token owned by the administrator. The administrator
also handles the service of the Security Token Service (STS) for
issuing and validating internal and external tokens.

A crucial entity within each domain is the Policy enforcement
point (PEP) which functions as the first access point for any cross-
domain interactions. As described in [6], the PEP intercepts the
messages entering or leaving the domain and processes them by
invoking the appropriate handlers to deal with corresponding parts
of the message. The policy that governs PEP behaviour, including
the implementation of the handlers as well as what actions
execution each of them entails, is defined by the administrative
management service and can be updated at runtime.

1 Editing authors
† Work carried out during the author’s scientific visit at BT Security
Research Centre.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SWS’07, November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 1-59593-546-0/07/0011...$5.00.

This can include processing of various SOAP message headers
such as address, signature, and so on, but also redirecting them to
the STS for the evaluation of the token validity3.

When several domains wish to federate, the administrators agree
on this and exchange their own tokens, which subsequently allow
them to validate and control any cross-enterprise interactions via
PEP interceptions. However, this basic model does not allow for
fine-grained separation of different collaborations. There may be
one STS for the domain, and establishing trust between all of
them provides the baseline for validating subsequent cross-
domain interactions.

However, the same service can be offered in several different
collaborations at the same time. This requires an additional
mechanism that allows one to separate the interactions of the same
service within these collaborations. To address this issue we build
on WS-Coordination [31], which uses a common “context” (an
XML element) to identify the common activity, and defines
Coordinator entities that are able (by creating and propagating
common contexts) to correlate actions of different services into a
common activity, and likewise – to distinguish actions of the same
service across different activities. As described in [2], the STS is
extended with the Coordinator capability and the “context” is used
as a collaboration identifier which is included in the tokens
created by the STS for members of a particular collaboration. The
model, summarized in Section 2, still leaves the adaptation of the
membership as the collaboration evolves, particularly the
revocation of the removed members, as an open challenge.

Web Services Definition Language (WSDL) [32], along with Web
Services Resource Framework (WSRF) [33] can be used to
provide a common description of the application functionalities as
a web service and then to offer it as multiple instances that would
maintain independent execution state even though they may refer
to the same application code. This however may not be always
desirable due to security reasons; for example, in a grid-like
environment, where different application services may be hosted
on a single execution environment, and each of the services may
have many running instances that contribute to different
collaborations. In addition to the flexible federation model that
allows bringing together relevant service instances into a common
collaboration, the full separation of the application logic and
instances’ execution is a strong security requirement.

1.2 Contribution
The main contribution of the paper is a new secure framework that
provides mechanisms to control membership of web service
instances and the associated policies of their behaviour in a
federated collaboration. We also propose a secure hardware based
design of the architecture which combines security features
defined at different level of abstraction, from hardware to
application level, strengthening the security of the overall
collaborative environment.

3 The model we refer to is implemented using WS technologies. The STS
implements WS-Trust and WS-Security [30],[29]. The PEP model has
some similarities to Apache Axis, for the full overview of the
functionalities and architecture see [6].

By leveraging on the use of secure trusted computing
technology [3], the work reported in this paper extends the
existing work on the system and protocols for secure and
automated cross-realm interactions of web services [2] by
improving the security of the distributed web services
transactions and addressing the issues of controlling admission
and revocation of a participant to/from the group.

The proposed architecture achieves the following:
• Supports stronger forms of group membership authentication in

a federated environment.
• Provides a baseline for an effective master-slave relationship

between trust authorities and the SOA enforcement
infrastructure that facilitates security token/certificate revocation
and re-issuing.

• Separation of security token management and collaboration
membership from the application logic.

• Provides all these functionalities while making minimal
assumptions on the WS environment and applying no major
restrictions on the deployment topology or on the nature of the
collaboration participants and their relationships. The only
underlying assumption is that, within a trust realm, there is an
existing trust relationship between the hardware components.

The rest of the paper is organized as follows. Section 2 describes
a WS-based mechanism that allows participants provided by
different enterprises to engage in the common federation. Section
3 summarizes the architecture that provides separation of the
management and application logic of the web services (instances).
A hardware-based mechanism to control membership of web
service instances and the associated policies of their behaviour in
a federated collaboration is presented in Section 4. Section 5
discusses state of the art of the group-oriented secure
communication protocols, and related work in the area of trusted
hardware. We conclude in Section 6.

2. MODEL FOR WEB SERVICES
FEDERATION MANAGEMENT

This section provides an overview of the earlier proposed
architecture [2] that provides a co-ordinated management of
shared security context allowing participants (users, services,
resources) provided by different enterprises to enter the common
federation in order to execute a common activity. Typically, a
demand for including new participants will appear during the
collaboration lifetime, while existing participants may need to be
dropped. While catering to the dynamic environment, the security
of the collaboration also needs to be maintained: members of a
federation must be able to identify one another, identify messages
as coming from other members of the federation, and verify the
truth of membership claims made by other parties in the
federation.

2.1 Basic architecture
Building on the WS-Trust [30] and WS-Coordination [31], the
system and protocol summarized here allows assigning roles to
users/services of their organisation in the context of B2B
collaboration. It provides a mechanism to dynamically bootstrap
or exclude participants of the collaboration (i.e. group members),

and to accordingly update security context of the group on-the-fly.
The architectural model assumed is depicted in Figure 1.

Enterprise A Enterprise B

STS A STS B
Direct or

brokered

trust

PDP A PDP B

Activation
Service A

Registration
Service A

Registration
Service B

Web
Service 1

Web
Service 2

Activation
Service B

Figure 1 - Secure Federation

It is assumed that every entity in the model owns a cryptographic
key pair and an identity token provided by the environment (i.e. a
trust realm) they reside in. The token contains, among other
things, the owner’s ID and public key. These tokens can be
attached to every message when authenticating a requester at the
destination is required. As an example, an identity token owned
by web service 1 is:

Tws1 = (WS1_ID, Pub_keyws1,…)signPriv_keySTS ,

where WS1_ID is the identifier of the service1.

The Security Token Service (STS) that signs and issues these
identity tokens may be different from the one which is
subsequently involved in the creation of the security context. With
that respect, the assumption is that there is a predefined
relationship between the coordination service and the STS
responsible for creating the key-pair for the group and the group
token. This token is signed by a private key of that STS, and
contains at least the group ID, an identifier of the service and the
group public key:

Tgws1 = {GroupID, IDws1, Pub_keyg,…}signPriv_keySTS

2.2 System components
The following are the basic entities in the architecture:

1) Coordinator provides a mechanism for creation and automated
propagation of the contextual information, which in turn can
support separation of the members of different groups, and
scoping of the functions/actions of the security services for the
given context. It may consist of:
• Activation service, with an operation that enables an application

to create a coordination instance or context. Once a coordination
context is acquired by an application, it is then sent by
appropriate means to another application. The context contains
the necessary information to register into the activity specifying
the coordination behaviour that the application will follow.

• Registration service, with an operation that enables an
application to register for coordination protocols. The

Registration service of the original application or an application
may use one that is specified by an interposing, trusted,
coordinator. This way, an arbitrary collection of network
services may coordinate their joint operation.

• A coordination type-specific set of coordination protocols,
which define the coordination behaviour and the messages
exchanged between the coordinator and a participant playing a
specific role within a coordination type.

2) Security Token Service (STS) refers to a component that can
issue, validate and/or exchange security tokens, which are
effectively a signed collection of claims about a particular member
of a trust realm. There is at least one STS associated with a trust
realm, and several entities within the same realm may use the
same STS.

3) Policy Decision Point (PDP) refers to a network node that
makes decisions on the basis of already defined declarative
security policies.

4) Policy Enforcement Point (PEP) refers to any mechanism that
enforces a (security) policy of a trust realm on a network entity. A
PEP is deployed on behalf of a resource owner, service provider
or user and typically will implement at least one of the following
security behaviour patterns: a message inspector checks the
correctness of the message including validation of any tokens
expressing security claims; a message interceptor/security
intermediary/gateway provides the main point where processing
and transformation of message content is performed and a policy
decision is enforced; A Secure message router manages secure
and reliable message propagation to intermediaries and ensures
that they will be able to process only the information
portion/message segments that are necessary for their role, the rest
of the message being made confidential.

2.3 Collaboration protocol
The collaboration among the participating entities is presented in
Figure 2 and Figure 3, explaining message flow for creation and
propagation of security context for the group.

STS A

PDP A

Activation
Service A

Registration
Service A

Web
Service 1

1:
request
secure
context

2:
request
creation of
key-pair for
the context

3:
return context
& registration
service EPR

5:
authorisation
request to allow
WS1 to join the
context

6:
authorisation
response

7:
request
context token
creation for
participant

8:
context
token
delivery

Web
Service 2

9:
app. message
containing
context & context
token to “invite”
new participant

4:
request
registration

Figure 2 - Secure Federation collaboration diagram (part 1)

In step 1 WS1 requests group activation from the activation service
A, providing its identity token for authentication purposes. In step 2
the activation service A communicates with the STS A, which
creates a group key pair for this context; subsequently, this key-pair
will be made available (in a form of a token and proof token) to
WS1 and any other participant of the context upon successful
registration (see steps 5-8 below).

In step 3 the activation service A creates a group (context) identifier,
and passes it to WS1, along with the address of responsible
registration service A as per WS-Coordination specification. In step
4 the service WS1 requests registration with the context (i.e.
participation to the group), from the registration service A.

In steps 5 and 6, this request is validated and authorised at the
responsible PDP for conformance with the applicable policy of the
trust realm. After this is approved, the token for corresponding
context for WS1 is created by STS A and delivered as shown in
steps 7 and 8.

In Figure 3, steps 10-14 have similar meaning as the corresponding
interactions in Figure 2. Since WS2 is configured to use a different
coordination service, it sends request to the activation service B,
referencing both the original context and the registration service A.
This will cause the original context ID to be propagated to any
responsible registration service of enterprise B. There is no need for
activation service B to contact the STS B at this stage (such as in
step 2), since the key pair for the group already exists and will be
delivered to STS B in one of the following steps.

After the request is authorised (steps 13 and 14), registration service
B needs to register as interposed with the registration service A
(shown in step 15), which needs to be authorised against the policy
of the trust realm and that of the collaboration (steps 16 and 17),
including the validity of the “proof of invitation”. After this is
confirmed, the registration service A requests STS A to pass the key
pair to the STS B (steps 18 and 19); assuming a trust relationship
already existing between the two trust realms. Confirmation is then
passed back to registration service B (step 20), upon which
registration service B can request STS B to issue the context token
for WS2 (step 21). In step 22, this token is delivered.

STS A

PDP B

Activation
Service B

Registration
Service B

Web
Service 2

PDP A

Registration
Service A

16:
authorisation
request to allow
interposition

17:
authorisation
response

12:
request
registration

STS B

15: request for interposition

18:
request key pair to
be passed to STS B

10:
request secure context
(pass existing context)
11:
return same context & new
registration service EPR

13, 14:
authorisation
request/ response

20: ack

19:
key pair delivery
(existing federation
assumed)

21:
request context token
creation for participant

22:
context
token
delivery

23:
app. message response to WS1,
secured with the context token

Figure 3 - Secure Federation collaboration diagram (part 2)

2.4 Benefits
In order to allow for this mechanism, the interacting entities need
to be exposed via Web Services interfaces and need to understand
WS-Trust and WS-Coordination specifications. In addition, high-
level trust relationship between STS A and STS B needs to be
established in advance (preferably offline). In turn, the mechanism
ensures that only participating services that receive the full group
context following successful registration are able to enter the
group/activity interactions and that group interactions are not
visible to non-member services.

The activation and registration services provide and manage life-
cycle of the shared security context among a group of services in a
federation of trust realms using security tokens. The local identity
of the group and/or of a service is bound to the shared security
context of the group and services/participants assert their
membership to the group by presenting the security context. In
addition, the management of security perimeter protecting the
group is automated by utilising specialised infrastructure services
which provide security policy, federation of trust realms, creation/
translation of security tokens and keys. Furthermore, group
membership management does not require any prior knowledge, it
evolves as new participants added or removed from the group.

One of the existing challenges in the model is a good mechanism
for removing members from the group. At present, this can be
done using the protocol previously described. It is possible to
configure administrative nodes (i.e. registration services) to
exchange any updates on the members being removed from the
group (in the form of a signed list), and to propagate that further
down to the services they are responsible for. This would form the
extension of the group policy, which would need to be checked
for every incoming/outgoing message in order to ensure that the
message is not being received from (sent to) the entity which
group membership is revoked.

Problem of revocation has been and still is widely studied, and a
choice of a good scalable solution depends a lot on the
architecture in place and security requirements. A number of
models and extensions have been proposed - for both certificate-
based and group-oriented architectures (for more information see
[34]), and they mainly rely on the timely updates and enforcement
of the group membership at the recipient side.

One of the important issues that we address with this work is a
scalable mechanism for membership revocation and/or privilege
adaptation that does not compromise the security of the model
previously described. We leverage on our previous work on
virtualised trusted computing platform for web services security
[4], and extend the model to provide secure and enforceable
membership management and control of federated groups.

3. VIRTUALSATION AND TRUSTED
COMPUTING

In this paper we aim to ease secure group membership and solve
the problem of membership revocation. To achieve this we
propose an approach that uses the technology of platform
virtualisation and secure hardware mechanisms for the key storage
(i.e. trusted platform module [3]), with the software web services
running on that hardware, at the time of the software deployment.

Virtualisation provides us with mechanisms to create partitions
that share the hardware resources but are logically isolated. By
running web service instances in separate partitions, not only can
their security be improved, but also the efficiency of the process
distribution, by optimising the use of the hardware resources.
Trusted computing provides technology for cryptographic keys
and application data to be stored securely within the machine
hardware and provide mechanisms to attest the integrity of a
remote machine. In this section we give a brief summary of these
technologies.

3.1 Virtualisation
The concept of a virtual machine was first developed by IBM in
order to provide concurrent access to the mainframe resources [8].
Each virtual machine (VM) provided a completely protected and
isolated abstraction of the underlying hardware architecture to the
applications running inside it. In the recent years, hardware
virtualization has become a popular technology since sharing of
hardware among multiple workloads reduce operating costs as
well as makes the system utilization more efficient [9]. The
Virtual Machine Monitor (VMM) software layer provides this
virtualization layer and supports the creation, maintenance and
teardown of the virtual machines. Detailed explanation of these
implementations are beyond the scope of this paper and interested
readers are referred to [10],[11].

3.2 Trusted Computing
Trusted computing aims to provide cheap open commodity
systems with certain desirable properties, usually associated with
high-assurance closed systems. The Trusted Platform Module
(TPM) specifications [3], defined by the Trusted Computing
Group [13], provide a mechanism to implement such a trusted
computing architecture by using (among other things), a hardware
root of trust. The TPM, implemented as a chip that is attached to
the motherboard of the machine, provides several cryptographic
operations, such as random number generation, asymmetric and
symmetric key encryption and decryption, signing, secure
hashing, etc. Each TPM has several cryptographic keys built in.

Storage Root Key (SRK) forms the Root of Trust for Storage and
always resides in the non-volatile memory of the TPM. When a
TPM generates a key, it is generated by its parent key and SRK
forms the root of this tree. Endorsement Key (EK) is used to
uniquely identify the TPM. Each TPM manufacturer provides a
certificate to the EK attesting the compliance of the TPM to the
specifications. The TPM produces Attestation Identification keys
(AIKs) that are linked to the platform using certificates from the
EK. Certification Authorities (CAs) uses the certificate issued by
the EK and the manufacturer’s certificate of EK to attest the AIKs.
Each TPM has at least 16 Platform Configuration Registers
(PCRs) that store measurement values (usually hash values) of
platform configurations which, along with the AIKs, can be used
to attest the state of a machine using the process of remote
attestation [14].

Just like any other hardware, the TPM needs to be virtualized in
order to be used within a VM setup. IBM’s work on vTPMs [7] is
an excellent starting point. The hardware TPM is controlled by a
vTPM Manager that resides in one of the VMs, as shown in

Figure 4. It also creates other vTPM instances that are then
associated with individual VMs. Each vTPM instance performs
the full set of TCG TPM specifications, thus allowing each VM to
use the vTPM instances as if the VM had a direct control over the
physical TPM chip.

By generating an EK per vTPM, this architecture allows each
vTPM, and hence each VM that uses the instance, to decrypt
information using the private key associated with the EK. It also
enables the creation of independent key hierarchy per vTPM. By
using the trusted computing architecture for deploying web
services, one can increase the security of the system (keeping the
encryption key secure in the TPM), and can also support the
possible requirement of consumers, enabling them to verify the
integrity of the deployed system (using remote attestation).

4. TC DERIVED WEB SERVICES
ARCHITECTURE
As mentioned earlier, in this paper we propose a framework that
leverages on the power of platform virtualisation and secure
trusted hardware to improve the security and management of
group membership and membership revocation in a federated
environment.

As explained later on, our architecture leverages on the property
of Trusted Computing that secret information owned by various
entities (including WS - web service instances) can be securely
stored by encrypting it with a hardware-protected key. When the
entity in question possesses certain privileges, it is entitled to
access this information (according to the defined policy) in order
to protect its interactions. In addition, virtualisation enables the
platform host to securely isolate these entities allowing for
efficient platform usage while at the same time ensuring their
independent existence. By providing virtualised TPM module for
each VM on a host, more fine-grained control can be achieved, in
terms of which user entity is authorised to access and use the WS
instance, as well as which administrative entity is authorised to
manage the security configurations of the WS instance. Typically,
the former would correspond to the scope of the collaboration,
whereas the latter would map to the stakeholder that owns the
service (but may be using outsourcing for the service hosting).
As a WS joins a new group or leaves existing groups, this security
information can be updated via programmable means by an
authorised administrative entity of the trust realm, which has

Virtual Machine Monitor

Machine Hardware

vTPM Manager

Application

OS with
Client TPM Driver

TPM Hardware

V
T
P
M

V
T
P
M

V
T
P
M

VM

Application

OS with
Client TPM Driver

VM

Figure 4: vTPM Architecture

access to the management interface of the enforcement point –
either locally or over a trusted network connection4. The choice
here can depend on the deployment architecture of an
organisational network, or on particular security requirements.
Referring to the federation model presented in Section 2, a
dedicated management functionality associated to the coordinator
can act as a local-domain administrative entity for this purpose. In
the rest of the paper we will refer to this entity as a TPM
administrator. However, separation of the functionalities, as well
as coordination of the activities between the coordinator and TPM
administrator needs to be ensured.

4.1 Local Domain and Group Membership
Token

In this subsection we introduce the protocol that has to be
followed by a web service W1 in order to obtain local domain
membership token T1 from TPM administrator A1 and group
membership token Tg from STS1.

In step 1, W1, instantiated in an isolated partition, sends a request
M1 to TPM administrator A1 asking for a local domain
membership token. The request contains the public part of the
vTPM’s Endorsement Key (EK), the End Point addRess (EPR) of
the service instance and a signature on these values using the
Attestation Identity Key of the vTPM.

BSM

W1

BSM

A1

1:
Request membership token

2:
Challenge /
Response

3:
Token
delivery

Figure 5: Steps for obtaining local domain token

The Base Service Manager (BSM) [4] is a trusted piece of
software that manages the creation, maintenance and teardown of
WS instances and is logically located at the same level as the
type2 VMM5. The protocol above assumes that the local domain
administrator and the WS instance shares the same BSM and
hence is hosted on the same machine. If this is not the case, a
second round of signature chain has to be added to M1 to prove
the authenticity of the AIK of W1’s vTPM.
W1 � A1: M1= EKW1,EPRW1,Sig{EKW1, EPRW1} AIKW1

4 Local access and trusted network connection access are
not differentiated , hereafter
5 VMM runs within level 2 protection ring (OS) with guest
OS running at level 3 (applications)

Optionally A1 could run a challenge-response protocol (step 2) to
ensure that the advertised EPR of the WS1 does indeed exists and
that it has access to the private key of vTPM’s EK. If this is
verified successfully, A1 sends T1 back to W1 as shown in step 3.

T1 = EKW1, EPRW1, Pub_keyA1, EPRA1, Sig{EKW1, EPRW1} A1,
Sign {Pub_keyA1} TTP, other details

Where EKW1 is the public part of W1’s Endorsement Key, TTP is
a trusted third party like VeriSign and ‘other_details’ denotes all
other required and optional details like validity time period etc. As
before, the two BSM shown in the diagram could either be a
single physical entity or be implemented on separate hardware.

A similar protocol is run between W1 (using T1 to prove its
membership) and STS1 resulting in W1 obtaining Tg

`.

4.2 Membership Revocation
As pointed out earlier, membership revocation represents a
significant challenge in a dynamic environment. Revoking W1’s
membership of a group involves two separate steps.

• Updating membership list - The STS maintains, for each group

created in its domain, the list of WS instances that are members
of the group. When (say) W1 leaves a group, its details are
removed from the membership list and the updated list is
published. This can be done without much complication by
assigning a short expiry date for the membership list and getting
STS to republish a signed and time-stamped version of the
membership list, reflecting any additions and deletions to/from
the list. This process serves mainly as an auditing mechanism to
ensure and verify the accountability of STS.

• Removing W1’s access to Tw1-g - When W1 leaves a group; it

should no longer be able to send messages to the group. In
practice this can be implemented by revoking W1’s access to the
group token Tw1-g.

Preventing W1 access to Tw1-g, including physically removing Tw1-

g from the secure storage associated with W1, may not be
straightforward, depending on the threat model assumed. If the
web services are trusted to adhere to their specified behaviour
then removing access to Tw1-g can be achieved by introducing a
management action to the management capabilities [5] of W1 that
enables the TPM administrator or management agent to request,
via the management interface of W1, the removal of (access to)
Tw1-g.

However, in many cases the threat model assumes that the web
services are not trusted and hence are not expected to behave as
specified when the group membership tokens need to be forcefully
revoked. The solution we propose is to implement a scheme in
which the group token is never given directly to W1, thus
preventing its full control of Tw1-g. The next section examines our
proposed architecture that implements such a system, by relying
on hardware compliant with the trusted computing platform
architecture [3].

4.3 Revised Control Model for Group
Membership Tokens

As explained earlier, in many cases it is not desirable to allow
web service instances direct access its own group membership
token. One possible solution which forms the basis of the
architecture proposed in the paper is to introduce a new secure
portioned sub-system that acts as the access handler and which
controls the life-cycle of such security tokens.

We call such an entity the Group Token Handler (GTH).
Following the architecture from [4], the GTH can be
represented as a triple (P, H, MC) where P is a dedicated
partition, H is a handler, and MC is a dedicated manageability
capability, i.e. a part of the manageability interface of the
enforcement middleware associated with the corresponding
service instance.

The GTH-enabled system is implemented by extending the
architecture defined in [4], as shown in the Figure 6. As before,
the TPM and PEP VM are isolated into their own partitions,
with each WS instance’s VM forming other partitions. In
additions a VM partition is created for the GTH and its data.
When the STS allows W1 membership to a group, the group
token Tw1-g and the private key corresponding to the group
public key present in Tw1-g is sent to the GTH, instead of to W1.
When W1 wishes to send a message to the group members, it
sends the message (without the group token) to the PEP. The
PEP then sends the message to the GTH partition. As long as
W1 is recognized as a group member by STS1, any such request
on behalf of W1 to insert Tw1-g and encrypt and sign the
outgoing message will be honoured by GTH.

The GTH partition is configured to accept requests by specific
manageability clients, including the TPM administrator and the
STS. An authorisation policy that each authority in the trust
realm can use MC only for the tokens that it has provided can

be used to impose restrictions on the working of these
manageability clients. When either the TPM administrator A1 or
the security token service STS1 wishes to revoke one of the
existing group tokens, it requests the GTH to prohibit access to
this token from any WS or that the token be destroyed.
Similarly if a specific WS leaves a group, its access to the
corresponding group token is denied by removing the token
from the list of groups it is a member of. This is done using the
corresponding manageability interface of the enforcement
component (i.e. the MC of the PEP). On receiving this request,
GTH updates the corresponding token list by making the
requested token inaccessible or by destroying it.

If dependencies exist between tokens, these should be reflected
in the way the tokens are stored and also in the way their
removal or denial of access to them is implemented. For
example, according to [2], the validity of group tokens depends
on the validity tokens identifying an entity within its original
trust realm. Consequently the removal of identification token
should imply the removal of all group tokens whereas the
removal of a group token should not affect the validity and use
of such an identification token. Removing or making a group
token inaccessible isolates the WS from all group interactions
since the group token has to be attached with every outgoing
message in order to prove membership in the group [2]. At the
same time, since the GTH would refuse the use of the group
private key to decrypt subsequently received group messages,
the confidentiality of the messages is maintained.

4.4 Alternate Architectures
The proposed architecture in Figure 6 can have several
variations based on varying levels of entity isolation. Figure 6
shows the GTH being shared between various WS instances on
the same VHE. By further decomposition of the management-
related partitions, higher level of security and re-configurability
can be achieved. Examples of these are illustrated below.

W2 Data

Guest OS with

Client TPM Driver

Mi
Virtual Machine Monitor +

Base Service Manager

v

T

P

M

v

T

P

M

v

T

P

M

vTPM Manager

action chain +
config data of WS1

Interceptor
repository

TPM VM

A1

A1

A2

An

WS VM

Guest OS with

Client TPM Driver

W1 components

W1 Data

W2 components

WS VM

TPM Hardware

TPM command flow

SOAP message flow

PEP VM

GTH

GTH VM

Token List

Tw1-g1

Twn-g1

Wn

W1

Tw1-g2

Mo, (…)Mo, Tw1-g1, (…)

Tw1-g1

GT?

Figure 6: Modified partition architecture for WS instances

Figure 7 shows a model with a separate GTH partition for each
WS instance. This allows different WS instances to co-exist on the
same host, whilst being used in different collaborations -
controlled by different administrative entities, which can
independently manage their memberships.

Figure 8 shows a model where, in addition to separate GTH
partition for each WS instance, there is a Policy VM for each WS
instance as well. While still allowing for separate membership
management per instance, this model also allows the authorities of
collaboration management and security policy management to be
granted to different administrative entities. So, for example, while
a collaboration administrator can be an entity trusted and/or
jointly appointed by all collaboration participants to manage this
particular collaboration, security policy administrators may be
entities from the organisational domain, responsible for updating
security configuration of the WS instance to reflect the access
policies of each participant.

By increasing the amount of isolation between the components
these alternate architectures improve on the security and integrity
assurance provided by the system. Since each partition can have
its own TPM, data specific to the functional partition can be
encrypted using the VM specific TPM keys. Each partition can
also be given a separate management interface allowing for
support of finer delegation of management responsibilities.

However, the larger isolation comes at the cost of scalability and
management overhead. The creation and maintenance of extra
VMs to hosts the individual GTHs and Policy VMs would mean
that the number of WS instances that can be supported per VHE
would decrease. Also, a TPM administrator would need to
maintain larger set of keys, and potentially to perform more
frequent invocations. A decision on which of the architectures
should be adopted in practise depends on the security assurance
demanded by the WS component consumers.

W2 Data

Mi

v

T

P

M

v

T

P

M

v

T

P

M

vTPM Manager

Interceptor
repository

TPM VM

A2

An

WS VM

Guest OS with

Client TPM Driver

W1 components

W1 Data

W2 components

WS VM

TPM Hardware

PEP VM

GTH1

Policy/ GTH VM

W1 Token List

Tw1-g1, Tw1-g2, …

A1

Policy for W1

Mo, (…)

Tw1-g1

GT?

Mo,Tw1-g1 (…)

Guest OS with

Client TPM Driver

GTH2

Policy/ GTH VM

W2 Token List
Tw2-g1, Tw2-g2, …

Policy for W2

action chain +
config data of WS1

A1

TPM command flow

SOAP message flow

Virtual Machine Monitor +

Base Service Manager

Figure 7: Separation of GTH partition per WS instance

W2 Data

Mi

v

T

P

M

v

T

P

M

v

T

P

M

vTPM Manager

Interceptor
repository

TPM VM

A2

An

WS VM

Guest OS with

Client TPM Driver

W1 components

W1 Data

W2 components

WS VM

TPM Hardware

PEP VM

GTH1

GTH VM

W1 Token List
Tw1-g1, Tw1-g2, …

A1

Mo, (…)

Tw1-g1

GT?

Mo,Tw1-g1 (…)

Guest OS with

Client TPM Driver

GTH2

GTH VM

W2 Token List
Tw2-g1, Tw2-g2, …

Policy VM

Policy for W1

Policy VM

Policy for W2

action chain +
config data of WS1

A1

TPM command flow

SOAP message flow

Virtual Machine Monitor +

Base Service Manager

Figure 8: Further decomposition of security enforcement partitions: GTH and Policies per WS instance

4.5 Revoking the STS
So far we have considered the process of revoking the group
membership of the WS when instructed by the STS. Even though
the STS itself is protected by an isolated partition, a strong threat
model has to assume that the STS can also be compromised and
hence may in turn need to be revoked. In order to counter such a
powerful attack, an additional architecture layer that uses a new
entity called the STS Revoker (STSR) is proposed (Figure 9).

BSM

W1

BSM

STS1

2:
Request membership token

3:
Challenge /
Response

4:
Token insertion

request
GTH1

5:
Token
delivery STSR1:

STS revocation
message

Figure 9: STS Revoker concept

When a STS compromise is detected, the STSR informs the GTH
that it should use a new STS’s service to check group
membership. In order to do this, during the initialization phase of
the GTH, the administrator also specifies the EPR of the STSR
along with the EPR of the STS(s). When a compromised STS is
detected, STSR (using out-of-band methods) informs the GTH to
stop using the compromised STS and provides the GTH with the
EPR of an alternate STS to use from then on. This procedure
assumes that the STSR is more secure that the STS6. The overall
STSR architecture is shown in Figure 9 above.

5. RELATED WORK
Research in secure group communication aims to provide group
membership control, secure key distribution, and secure data
transfer [19]. Typically, this is achieved by distributing the group
key only to the participants (control of the group membership),
and using that key for encryption of the traffic (secrecy of
exchanged data). In addition, in a dynamic environment, where
members can freely join and leave, integrity of the group is
preserved by refreshing the group key, while ensuring that the key
distribution is done in a secure and scaleable way. A number of
schemes for key management and distribution exist [20], which
can be mainly divided into centralised, decentralised, and
distributed. While these have their distinct advantages and
shortcomings, most of the approaches are concerned with design
of secure group packet-level protocols.

However, there are two important issues related to the
authentication and access control which are developed to the

6 STSR can be a device that is not permanently “online”,
but is switched-on only for the purpose of (re)configuration
only, or for responding to an identified security threat.

lesser extent, and are also more relevant to the work presented in
this paper. Commonly, authentication provided with a key
management is recognised as a group authentication, meaning that
participating entities can authenticate each other as a group
member. However, authentication on the level of an individual
user is far more complex if relying on the group protocols only.
For this, schemes that consider network location [21], third party
–generated public-key certificates [22], or Diffie-Hellman
agreement (see [18]) for distributed ad-hoc communities [23]
have been considered. The second issue, of access control, is
normally concerned with admission to a group, i.e. whether or not
an entity is a valid member of a group [20]. This is provided
through timely update and distribution of a group key. However,
this does not provide any means of constraining actions of an
entity once it is allocated to a group, or for defining more fine-
grained group policy other than inclusion/exclusion. Various
authorisation frameworks and mechanisms have been proposed
[1][24][25][26][27][28][29]. This is the area of active research,
particularly when there is a requirement for group members to
reside in different administrative domains.

On the other hand, several recent research works have been
investigating on how virtualization can be extended to support the
‘on demand’ nature of web service hosting requirements. SODA
[12] is one such architecture that virtualizes each service nodes by
running it within individual VMs on the hosted machine. By
designing their architecture in a Master-Agent setup they are able
to create the needed services on demand, across several machines
in the hosting farm. Up to date however, work in the area of
virtualisation provides only basic process isolation and system
security that is inherent in the virtualisation paradigm and does
not extend the architecture to perform WS specific functionalities.

In summary, we are not aware of any existing or similar work that
tackles issues of hardware-based group-oriented security and
membership management for the purpose of cross-domain web
services interactions.

6. CONCLUSION AND FUTURE WORK
In this paper we propose a new Web Services architecture that
eases the burden of policy configuration in establishing dynamic
secure federated collaborations and supports fine-grained
enforcement at the level of WS instance. Furthermore, we extend
[2],[4] and [6] by introducing an architecture that facilitates the
propagation and life-cycle management of group membership
state and tokens by leveraging on the use of a virtualised trusted
computing platform architecture in a federated environment. The
architecture uses the concept of Group Token Handler to maintain
and destroy the group tokens on behalf of the web service.
Furthermore by using trusted hardware, the architecture allows
secure generation and storage of tokens and keys proving
membership in groups within and across the trust realms of a
federated environment.

Depending on which of the described alternative architectures is
used, further work may be needed to analyse the very details of
the interaction protocols and define the exact content of the
associated messages. The performance overhead introduced by the
GTH needs to be analysed further, in order to confirm that the
GTH does not represent the bottleneck in the implementation, as it
needs to mediate all group messages related to the web service

instance. Finally, another aspect of our ongoing work is on the
architectural extension, addressing the design of the

Next stage in our work, covering the above aspects, is an
experimental implementation of the proposed architecture in order
to secure the interactions on the WS-based B2B Gateway
described in [15].

ACKNOWLEDGEMNTS
Some aspects of the work reported in this paper are funded by EU
IST integrated projects TrustCoM [16] and BEinGRID [17].

REFERENCES
[1] Djordjevic I., Dimitrakos T., Romano N., Mac Randall D.,

Ritrovato P.: Dynamic Security Perimeters for Inter-Enterprise
Service Integration. Future Generation Computer Systems, the
International Journal of Grid Computing: Theory, Methods and
Applications, Elsevier B.V. 2007, Volume 23, Issue 4, Pages 633-
657 (May 2007). URL:
http://sciencedirect.com/science/journal/0167739X

[2] Djordjevic I., Dimitrakos T.: A system and protocol for
coordinated management of shared security context of a collection
of network entities within a federation. European Patent Office (in
process, PCT application No to be assigned)

[3] “TCG Specification Architecture Overview”, Trusted Computing
Group, Revision 1.2, April 2004,
https://www.trustedcomputinggroup.org/

[4] Djordjevic I., Nair S.K., Dimitrakos T.: Virtualised Trusted
Computing Platform for Adaptive Security Enforcement of Web
Services Interactions. In proceedings of the International IEEE
Conference on Web Services (ICWS07), July 9-13, 2007, Salt
Lake City, Utah, USA

[5] Sedhukin I. (editor) “Web Services Distributed Management:
Management of Web Services (WSDM-MOWS) 1.0”. OASIS
OASIS Web Services Distributed Management (WSDM) TC.
Dec. 2004.

[6] Maierhofer A., Dimitrakos T., Titkov L., Brossard, D.:
Extendable and Adaptive Message-Level Security Enforcement
Framework, In proceedings of the International conference on
Networking and Services, (ICNS '06), Paolo Alto, July 2006,
ISBN: 0-7695-2622-5

[7] “TCG Generic Server Specification”, v 1.0 revision 0.8, Trusted
Computing Group, May 2005, https://trustedcomputinggroup.org/

[8] Creasy R.J.: The Origin of the VM/370 Time-Sharing System,
IBM Journal of Research and Development, 25(5):483, 1981.

[9] Figueiredo R., Dinda P.A., Fortes J.: Resource Virtualization
Renaissance, IEEE Computer Magazine, 38(5):28-31, 2005.

[10] Goldberg R.P.: Survey of Virtual Machine Research, IEEE
Computer Magazine, 7(6):34-45, 1974.

[11] Nanda S., Chiueh T.: A Survey of Virtualization Technologies,
Research Proficiency Report, Stony Brook, ECSL-TR-179,
February 2005.

[12] Jiang X., Xu D.: SODA: A Service-On-Demand Architecture for
Application Service Hosting Utility Platforms, In proceedings of
12th IEEE International Symposium on High Performance
Distributed Computing, pp. 174, 2003.

[13] Trusted Computing Group, https://trustedcomputinggroup.org/

[14] Sailer R., Zhang X., Jaeger T., van Doorn L.: Design and
Implementation of a TCG-based Integrity Measurement

Architecture, In proceedings of the USENIX Seceurity
Symposium, 2004.

[15] Dimitrakos T.: Securing application service exposure &
integration in B2B collaborations. In business track of ECOWS
2006, the 4th IEEE European Conference on Web Services,
Zurich, December 2006.

[16] TrustCoM project website: www.eu-trustcom.com

[17] BEinGRID project website: www.beingrid.eu

[18] Menezes A., Oorschot P.van, Vanstone S.: Handbook of Applied
Cryptography. CRC Press, 1996. ISBN: 0-8493-8523-7,
www.cacr.math.uwaterloo.ca/hac/

[19] Dondeti L.R., Mukherjee S., Samal A.: Survey and Comparison of
Secure Group Communication Protocols. Technical Report,
University of Nebraska-Lincoln, June 1999;
http://citeseer.ist.psu.edu/dondeti99survey.html

[20] Rafaeli S., Hutchison D.: A survey of key management for secure
group communication. ACM Computing Surveys (CSUR),
Vol.35, Issue 3, September 2003; pp. 309 . 329

[21] Ballardie T., Crowcroft J.: Multicast-Specific Security Threats
and Counter-Measures. Proc of Symposium on Network and
Distributed System Security (SNDSS.95), San Diego, USA,
February 1995

[22] Agarwal D.A., Chevassut O., Thompson M.R., Tsudik G.: An
Integrated Solution for Secure Group Communication in Wide-
Area Networks. Proc of 6th IEEE Symposium on Computers and
Communications, Hammamet, Tunisia, July 2001

[23] Ateniese G., Steiner M., Tsudik G.: New Multiparty
Authentication Services and Key Agreement Protocol. IEEE
Journal on Selected Areas in Communications, Vol.18, No.4,
April 2000; pp. 628-639

[24] Hardjono T., Weis B.: The Multicast Group Security Architecture.
RFC 3740, Category: Informational, IETF, March 2004

[25] Chadwick D.W., Otenko A., Ball E.: Role-Based Access Control
with X.509 Attribute Certificates. IEEE Internet Computing, Vol.
7, Issue 2, March/April 2003, pp. 62-69

[26] Thompson M.R., Essiari A., Mudumbai S.: Certificate-Based
Authorization Policy in a PKI Environment. ACM Transactions
on Information and System Security (TISSC), Vol. 6, Issue 4,
November 2003, pp. 566-588

[27] Pearlman L., Kesselman C., Welch V., Foster I., Tuecke S.: The
Community Authorization Service: Status and Future. Conference
for Computing in High Energy and Nuclear Physics (CHEP03),
La Jolla, California, USA, March 2003.

[28] Alfieri R. et al: Managing Dynamic User Communities in a Grid
Autonomous Resources. Proc of Conference for Computing in
High Energy and Nuclear Physics (CHEP03), La Jolla, California,
USA, March 2003.

[29] OASIS Specifications;
http://www.oasis-open.org/committees/committees.php

[30] Web Services Trust Specification,
www.ibm.com/developerworks/library/specification/ws-trust/

[31] Web Services Coordination Specification;
www.ibm.com/developerworks/library/specification/ws-tx/

[32] Web Service Definition Language (WSDL) Specification;
http://www.w3.org/TR/wsdl

[33] Web Services Resource Framework; http://www.globus.org/wsrf/

[34] Djordjevic I.: Architecture for Dynamic and Secure Group
Working. PhD Thesis, University of London, London, UK, June
2004

