
Secure Web Service Federation Management using  

TPM Virtualisation 
 

Srijith K. Nair
1*†
, Ivan Djordjevic

2*
, Bruno Crispo

1,3
, Theo Dimitrakos

2
 

1
 Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands 

2
 SOA Security, Security Research Centre, British Telecommunications, UK 

3
 DIT, University of Trento, Italy 

{srijith, crispo}@few.vu.nl, {ivan.djordjevic, theo.dimitrakos}@bt.com 
 

                                                           
 
 

ABSTRACT 
Web Services and SOA provide interoperability and architectural 
baseline for flexible and dynamic cross-enterprise collaborations, 
where execution and use of the participating services contributes 
to the common objective. Relationships within these 
collaborations are complex, with services joining and leaving 
throughout the life cycle, or the same services being offered in 
several collaborations simultaneously. This provides strong 
requirements for federated security, where integrity and 
confidentiality of the collaboration must be maintained through 
membership control, security policy enforcement and separation 
of web service instance interactions in different collaborations. 

 
In this paper we propose a new Web Services (WS) framework for 
managing and controlling WS interactions in a federated 
environment, leveraging on platform virtualisation architecture 
and the functionalities provided by trusted secure hardware. The 
framework allows configuring policies that define collaboration 
membership, and enforce access to the collaboration per-WS 
instance. In addition, since the access to the configurations is 
restricted, it provides master-slave model where only authorised 
administrative entity can modify any of the above - either at the 
deployment or at the execution time. Some of the benefits of the 
proposed approach are: fine-grained external exposure of WSs, a 
flexible model for group membership control and revocation and 
hardware-enabled secure virtualised system providing functional 
process isolation and strong data security. 
 

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information Systems]: 
Security and Protection 
 

General Terms 

Security, Design 

Keywords 
Web Services, Security, Federation, Membership Management, 
Trusted Computing 

1. INTRODUCTION 
1.1 Background 
With the adoption of Service Oriented Architectures (SOA), the 
advantages of service virtualisation are becoming prominent. It 
describes an advanced way of cross-enterprise integration of 
application services and virtualisation of the (cross-organisational) 
computational environment where these services are hosted and 
executed. We call this a Virtual Hosting Environment (VHE). 
 
VHE refers to the federation of a set of distributed hosting 
environments for execution of an application and the possibility to 
provide a single (logical) access point to this set of federated 
hosting environments.  In addition to the application services, this 
virtualised service bundle needs to include a number of 
infrastructure services (potentially provided by a third party) for 
managing non-functional aspects of the application. From the 
perspective of a VHE consumer, the latter are transparent. VHE as 
such requires two main security services − trust federation and 
security enforcement. 
 
The basic federation model [1] assumes the existence of separate 
domains (trust realms) which can be identified by a common 
internal policy and a security administrator who controls the 
domain membership by issuing/revoking tokens to the entities that 
live inside the domain. The domain tokens (which can be seen as a 
WS equivalent of public-key certificates) are typically derived 
from the root token owned by the administrator. The administrator 
also handles the service of the Security Token Service (STS) for 
issuing and validating internal and external tokens. 
 
A crucial entity within each domain is the Policy enforcement 
point (PEP) which functions as the first access point for any cross-
domain interactions. As described in [6], the PEP intercepts the 
messages entering or leaving the domain and processes them by 
invoking the appropriate handlers to deal with corresponding parts 
of the message. The policy that governs PEP behaviour, including 
the implementation of the handlers as well as what actions 
execution each of them entails, is defined by the administrative 
management service and can be updated at runtime. 
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This can include processing of various SOAP message headers 
such as address, signature, and so on, but also redirecting them to 
the STS for the evaluation of the token validity3. 
 
When several domains wish to federate, the administrators agree 
on this and exchange their own tokens, which subsequently allow 
them to validate and control any cross-enterprise interactions via 
PEP interceptions. However, this basic model does not allow for 
fine-grained separation of different collaborations. There may be 
one STS for the domain, and establishing trust between all of 
them provides the baseline for validating subsequent cross-
domain interactions.  
 
However, the same service can be offered in several different 
collaborations at the same time. This requires an additional 
mechanism that allows one to separate the interactions of the same 
service within these collaborations. To address this issue we build 
on WS-Coordination [31], which uses a common “context” (an 
XML element) to identify the common activity, and defines 
Coordinator entities that are able (by creating and propagating 
common contexts) to correlate actions of different services into a 
common activity, and likewise – to distinguish actions of the same 
service across different activities. As described in [2], the STS is 
extended with the Coordinator capability and the “context” is used 
as a collaboration identifier which is included in the tokens 
created by the STS for members of a particular collaboration. The 
model, summarized in Section 2, still leaves the adaptation of the 
membership as the collaboration evolves, particularly the 
revocation of the removed members, as an open challenge. 
 
Web Services Definition Language (WSDL) [32], along with Web 
Services Resource Framework (WSRF) [33] can be used to 
provide a common description of the application functionalities as 
a web service and then to offer it as multiple instances that would 
maintain independent execution state even though they may refer 
to the same application code. This however may not be always 
desirable due to security reasons; for example, in a grid-like 
environment, where different application services may be hosted 
on a single execution environment, and each of the services may 
have many running instances that contribute to different 
collaborations. In addition to the flexible federation model that 
allows bringing together relevant service instances into a common 
collaboration, the full separation of the application logic and 
instances’ execution is a strong security requirement. 
 

1.2 Contribution 
The main contribution of the paper is a new secure framework that 
provides mechanisms to control membership of web service 
instances and the associated policies of their behaviour in a 
federated collaboration. We also propose a secure hardware based 
design of the architecture which combines security features 
defined at different level of abstraction, from hardware to 
application level, strengthening the security of the overall 
collaborative environment.  
 

                                                           
3 The model we refer to is implemented using WS technologies. The STS 
implements WS-Trust and WS-Security [30],[29]. The PEP model has 
some similarities to Apache Axis, for the full overview of the 
functionalities and architecture see [6]. 

By leveraging on the use of secure trusted computing 
technology [3], the work reported in this paper extends the 
existing work on the system and protocols for secure and 
automated cross-realm interactions of web services [2] by 
improving the security of the distributed web services 
transactions and addressing the issues of controlling admission 
and revocation of a participant to/from the group. 
 
The proposed architecture achieves the following: 
• Supports stronger forms of group membership authentication in 

a federated environment. 
• Provides a baseline for an effective master-slave relationship 

between trust authorities and the SOA enforcement 
infrastructure that facilitates security token/certificate revocation 
and re-issuing. 

• Separation of security token management and collaboration 
membership from the application logic. 

• Provides all these functionalities while making minimal 
assumptions on the WS environment and applying no major 
restrictions on the deployment topology or on the nature of the 
collaboration participants and their relationships. The only 
underlying assumption is that, within a trust realm, there is an 
existing trust relationship between the hardware components. 

 
The rest of the paper is organized as follows.  Section 2 describes 
a WS-based mechanism that allows participants provided by 
different enterprises to engage in the common federation. Section 
3 summarizes the architecture that provides separation of the 
management and application logic of the web services (instances). 
A hardware-based mechanism to control membership of web 
service instances and the associated policies of their behaviour in 
a federated collaboration is presented in Section 4. Section 5 
discusses state of the art of the group-oriented secure 
communication protocols, and related work in the area of trusted 
hardware. We conclude in Section 6. 
 

2. MODEL FOR WEB SERVICES 
FEDERATION MANAGEMENT 

This section provides an overview of the earlier proposed 
architecture [2] that provides a co-ordinated management of 
shared security context allowing participants (users, services, 
resources) provided by different enterprises to enter the common 
federation in order to execute a common activity. Typically, a 
demand for including new participants will appear during the 
collaboration lifetime, while existing participants may need to be 
dropped. While catering to the dynamic environment, the security 
of the collaboration also needs to be maintained: members of a 
federation must be able to identify one another, identify messages 
as coming from other members of the federation, and verify the 
truth of membership claims made by other parties in the 
federation. 
 

2.1 Basic architecture 
Building on the WS-Trust [30] and WS-Coordination [31], the 
system and protocol summarized here allows assigning roles to 
users/services of their organisation in the context of B2B 
collaboration. It provides a mechanism to dynamically bootstrap 
or exclude participants of the collaboration (i.e. group members), 



and to accordingly update security context of the group on-the-fly. 
The architectural model assumed is depicted in Figure 1.  
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Figure 1 - Secure Federation 

It is assumed that every entity in the model owns a cryptographic 
key pair and an identity token provided by the environment (i.e. a 
trust realm) they reside in. The token contains, among other 
things, the owner’s ID and public key. These tokens can be 
attached to every message when authenticating a requester at the 
destination is required. As an example, an identity token owned 
by web service 1 is: 
  
Tws1 = (WS1_ID, Pub_keyws1,…)signPriv_keySTS , 
 
where WS1_ID is the identifier of the service1. 
 
The Security Token Service (STS) that signs and issues these 
identity tokens may be different from the one which is 
subsequently involved in the creation of the security context. With 
that respect, the assumption is that there is a predefined 
relationship between the coordination service and the STS 
responsible for creating the key-pair for the group and the group 
token. This token is signed by a private key of that STS, and 
contains at least the group ID, an identifier of the service and the 
group public key:  
 
Tgws1 = {GroupID, IDws1, Pub_keyg,…}signPriv_keySTS 
 

2.2 System components 
The following are the basic entities in the architecture: 
 
1) Coordinator provides a mechanism for creation and automated 
propagation of the contextual information, which in turn can 
support separation of the members of different groups, and 
scoping of the functions/actions of the security services for the 
given context. It may consist of: 
• Activation service, with an operation that enables an application 

to create a coordination instance or context. Once a coordination 
context is acquired by an application, it is then sent by 
appropriate means to another application. The context contains 
the necessary information to register into the activity specifying 
the coordination behaviour that the application will follow. 

• Registration service, with an operation that enables an 
application to register for coordination protocols. The 

Registration service of the original application or an application 
may use one that is specified by an interposing, trusted, 
coordinator. This way, an arbitrary collection of network 
services may coordinate their joint operation. 

• A coordination type-specific set of coordination protocols, 
which define the coordination behaviour and the messages 
exchanged between the coordinator and a participant playing a 
specific role within a coordination type. 

 
2) Security Token Service (STS) refers to a component that can 
issue, validate and/or exchange security tokens, which are 
effectively a signed collection of claims about a particular member 
of a trust realm. There is at least one STS associated with a trust 
realm, and several entities within the same realm may use the 
same STS. 
 
3) Policy Decision Point (PDP) refers to a network node that 
makes decisions on the basis of already defined declarative 
security policies. 
 
4) Policy Enforcement Point (PEP) refers to any mechanism that 
enforces a (security) policy of a trust realm on a network entity. A 
PEP is deployed on behalf of a resource owner, service provider 
or user and typically will implement at least one of the following 
security behaviour patterns: a message inspector checks the 
correctness of the message including validation of any tokens 
expressing security claims; a message interceptor/security 
intermediary/gateway provides the main point where processing 
and transformation of message content is performed and a policy 
decision is enforced; A Secure message router manages secure 
and reliable message propagation to intermediaries and ensures 
that they will be able to process only the information 
portion/message segments that are necessary for their role, the rest 
of the message being made confidential. 
 

2.3 Collaboration protocol 
The collaboration among the participating entities is presented in 
Figure 2 and Figure 3, explaining message flow for creation and 
propagation of security context for the group. 
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Figure 2 - Secure Federation collaboration diagram (part 1) 

 



In step 1 WS1 requests group activation from the activation service 
A, providing its identity token for authentication purposes. In step 2 
the activation service A communicates with the STS A, which 
creates a group key pair for this context; subsequently, this key-pair 
will be made available (in a form of a token and proof token) to 
WS1 and any other participant of the context upon successful 
registration (see steps 5-8 below). 
 
In step 3 the activation service A creates a group (context) identifier, 
and passes it to WS1, along with the address of responsible 
registration service A as per WS-Coordination specification. In step 
4 the service WS1 requests registration with the context (i.e. 
participation to the group), from the registration service A. 
 
In steps 5 and 6, this request is validated and authorised at the 
responsible PDP for conformance with the applicable policy of the 
trust realm. After this is approved, the token for corresponding 
context for WS1 is created by STS A and delivered as shown in 
steps 7 and 8.  
 
In Figure 3, steps 10-14 have similar meaning as the corresponding 
interactions in Figure 2. Since WS2 is configured to use a different 
coordination service, it sends request to the activation service B, 
referencing both the original context and the registration service A. 
This will cause the original context ID to be propagated to any 
responsible registration service of enterprise B. There is no need for 
activation service B to contact the STS B at this stage (such as in 
step 2), since the key pair for the group already exists and will be 
delivered to STS B in one of the following steps. 
 
After the request is authorised (steps 13 and 14), registration service 
B needs to register as interposed with the registration service A 
(shown in step 15), which needs to be authorised against the policy 
of the trust realm and that of the collaboration (steps 16 and 17), 
including the validity of the “proof of invitation”. After this is 
confirmed, the registration service A requests STS A to pass the key 
pair to the STS B (steps 18 and 19); assuming a trust relationship 
already existing between the two trust realms. Confirmation is then 
passed back to registration service B (step 20), upon which 
registration service B can request STS B to issue the context token 
for WS2 (step 21). In step 22, this token is delivered. 
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Figure 3 - Secure Federation collaboration diagram (part 2) 

 

2.4 Benefits 
In order to allow for this mechanism, the interacting entities need 
to be exposed via Web Services interfaces and need to understand 
WS-Trust and WS-Coordination specifications. In addition, high-
level trust relationship between STS A and STS B needs to be 
established in advance (preferably offline). In turn, the mechanism 
ensures that only participating services that receive the full group 
context following successful registration are able to enter the 
group/activity interactions and that group interactions are not 
visible to non-member services.  
 
The activation and registration services provide and manage life-
cycle of the shared security context among a group of services in a 
federation of trust realms using security tokens. The local identity 
of the group and/or of a service is bound to the shared security 
context of the group and services/participants assert their 
membership to the group by presenting the security context. In 
addition, the management of security perimeter protecting the 
group is automated by utilising specialised infrastructure services 
which provide security policy, federation of trust realms, creation/ 
translation of security tokens and keys. Furthermore, group 
membership management does not require any prior knowledge, it 
evolves as new participants added or removed from the group. 
 
One of the existing challenges in the model is a good mechanism 
for removing members from the group. At present, this can be 
done using the protocol previously described. It is possible to 
configure administrative nodes (i.e. registration services) to 
exchange any updates on the members being removed from the 
group (in the form of a signed list), and to propagate that further 
down to the services they are responsible for. This would form the 
extension of the group policy, which would need to be checked 
for every incoming/outgoing message in order to ensure that the 
message is not being received from (sent to) the entity which 
group membership is revoked.  
 
Problem of revocation has been and still is widely studied, and a 
choice of a good scalable solution depends a lot on the 
architecture in place and security requirements. A number of 
models and extensions have been proposed - for both certificate-
based and group-oriented architectures (for more information see 
[34]), and they mainly rely on the timely updates and enforcement 
of the group membership at the recipient side. 
 
One of the important issues that we address with this work is a 
scalable mechanism for membership revocation and/or privilege 
adaptation that does not compromise the security of the model 
previously described. We leverage on our previous work on 
virtualised trusted computing platform for web services security 
[4], and extend the model to provide secure and enforceable 
membership management and control of federated groups.  
 

3. VIRTUALSATION AND TRUSTED 
COMPUTING 

In this paper we aim to ease secure group membership and solve 
the problem of membership revocation. To achieve this we 
propose an approach that uses the technology of platform 
virtualisation and secure hardware mechanisms for the key storage 
(i.e. trusted platform module [3]), with the software web services 
running on that hardware, at the time of the software deployment. 



 
Virtualisation provides us with mechanisms to create partitions 
that share the hardware resources but are logically isolated. By 
running web service instances in separate partitions, not only can 
their security be improved, but also the efficiency of the process 
distribution, by optimising the use of the hardware resources. 
Trusted computing provides technology for cryptographic keys 
and application data to be stored securely within the machine 
hardware and provide mechanisms to attest the integrity of a 
remote machine. In this section we give a brief summary of these 
technologies. 
 

3.1 Virtualisation 
The concept of a virtual machine was first developed by IBM in 
order to provide concurrent access to the mainframe resources [8]. 
Each virtual machine (VM) provided a completely protected and 
isolated abstraction of the underlying hardware architecture to the 
applications running inside it. In the recent years, hardware 
virtualization has become a popular technology since sharing of 
hardware among multiple workloads reduce operating costs as 
well as makes the system utilization more efficient [9]. The 
Virtual Machine Monitor (VMM) software layer provides this 
virtualization layer and supports the creation, maintenance and 
teardown of the virtual machines.  Detailed explanation of these 
implementations are beyond the scope of this paper and interested 
readers are referred to [10],[11].  
 

3.2 Trusted Computing 
Trusted computing aims to provide cheap open commodity 
systems with certain desirable properties, usually associated with 
high-assurance closed systems.  The Trusted Platform Module 
(TPM) specifications [3], defined by the Trusted Computing 
Group [13], provide a mechanism to implement such a trusted 
computing architecture by using (among other things), a hardware 
root of trust. The TPM, implemented as a chip that is attached to 
the motherboard of the machine, provides several cryptographic 
operations, such as random number generation, asymmetric and 
symmetric key encryption and decryption, signing, secure 
hashing, etc. Each TPM has several cryptographic keys built in. 
 
Storage Root Key (SRK) forms the Root of Trust for Storage and 
always resides in the non-volatile memory of the TPM. When a 
TPM generates a key, it is generated by its parent key and SRK 
forms the root of this tree. Endorsement Key (EK) is used to 
uniquely identify the TPM. Each TPM manufacturer provides a 
certificate to the EK attesting the compliance of the TPM to the 
specifications. The TPM produces Attestation Identification keys 
(AIKs) that are linked to the platform using certificates from the 
EK. Certification Authorities (CAs) uses the certificate issued by 
the EK and the manufacturer’s certificate of EK to attest the AIKs. 
Each TPM has at least 16 Platform Configuration Registers 
(PCRs) that store measurement values (usually hash values) of 
platform configurations which, along with the AIKs, can be used 
to attest the state of a machine using the process of remote 
attestation [14]. 
 
Just like any other hardware, the TPM needs to be virtualized in 
order to be used within a VM setup. IBM’s work on vTPMs [7] is 
an excellent starting point. The hardware TPM is controlled by a 
vTPM Manager that resides in one of the VMs, as shown in 

Figure 4. It also creates other vTPM instances that are then 
associated with individual VMs. Each vTPM instance performs 
the full set of TCG TPM specifications, thus allowing each VM to 
use the vTPM instances as if the VM had a direct control over the 
physical TPM chip.  
 
By generating an EK per vTPM, this architecture allows each 
vTPM, and hence each VM that uses the instance, to decrypt 
information using the private key associated with the EK. It also 
enables the creation of independent key hierarchy per vTPM. By 
using the trusted computing architecture for deploying web 
services, one can increase the security of the system (keeping the 
encryption key secure in the TPM), and can also support the 
possible requirement of consumers, enabling them to verify the 
integrity of the deployed system (using remote attestation). 
 

4. TC DERIVED WEB SERVICES 
ARCHITECTURE  
As mentioned earlier, in this paper we propose a framework that 
leverages on the power of platform virtualisation and secure 
trusted hardware to improve the security and management of 
group membership and membership revocation in a federated 
environment. 
 
As explained later on, our architecture leverages on the property 
of Trusted Computing that secret information owned by various 
entities (including WS - web service instances) can be securely 
stored by encrypting it with a hardware-protected key. When the 
entity in question possesses certain privileges, it is entitled to 
access this information (according to the defined policy) in order 
to protect its interactions. In addition, virtualisation enables the 
platform host to securely isolate these entities allowing for 
efficient platform usage while at the same time ensuring their 
independent existence. By providing virtualised TPM module for 
each VM on a host, more fine-grained control can be achieved, in 
terms of which user entity is authorised to access and use the WS 
instance, as well as which administrative entity is authorised to 
manage the security configurations of the WS instance. Typically, 
the former would correspond to the scope of the collaboration, 
whereas the latter would map to the stakeholder that owns the 
service (but may be using outsourcing for the service hosting). 
As a WS joins a new group or leaves existing groups, this security 
information can be updated via programmable means by an 
authorised administrative entity of the trust realm, which has 
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Figure 4: vTPM Architecture 



access to the management interface of the enforcement point – 
either locally or over a trusted network connection4. The choice 
here can depend on the deployment architecture of an 
organisational network, or on particular security requirements. 
Referring to the federation model presented in Section 2, a 
dedicated management functionality associated to the coordinator 
can act as a local-domain administrative entity for this purpose. In 
the rest of the paper we will refer to this entity as a TPM 
administrator. However, separation of the functionalities, as well 
as coordination of the activities between the coordinator and TPM 
administrator needs to be ensured. 
 

4.1 Local Domain and Group Membership 
Token 

In this subsection we introduce the protocol that has to be 
followed by a web service W1 in order to obtain local domain 
membership token T1 from TPM administrator A1 and group 
membership token Tg from STS1. 
 
In step 1, W1, instantiated in an isolated partition, sends a request 
M1 to TPM administrator A1 asking for a local domain 
membership token. The request contains the public part of the 
vTPM’s Endorsement Key (EK), the End Point addRess (EPR) of 
the service instance and a signature on these values using the 
Attestation Identity Key of the vTPM. 
 

BSM

W1

BSM

A1

1:
Request membership token

2:
Challenge / 
Response

3:
Token 
delivery

 
Figure 5: Steps for obtaining local domain token 

The Base Service Manager (BSM) [4] is a trusted piece of 
software that manages the creation, maintenance and teardown of 
WS instances and is logically located at the same level as the 
type2 VMM5. The protocol above assumes that the local domain 
administrator and the WS instance shares the same BSM and 
hence is hosted on the same machine.  If this is not the case, a 
second round of signature chain has to be added to M1 to prove 
the authenticity of the AIK of W1’s vTPM. 
W1 � A1: M1= EKW1,EPRW1,Sig{EKW1, EPRW1} AIKW1 
 

                                                           
4 Local access and trusted network connection access are 
not differentiated , hereafter 
5 VMM runs within level 2 protection ring (OS) with guest 
OS running at level 3 (applications) 

Optionally A1 could run a challenge-response protocol (step 2) to 
ensure that the advertised EPR of the WS1 does indeed exists and 
that it has access to the private key of vTPM’s EK. If this is 
verified successfully, A1 sends T1 back to W1 as shown in step 3. 
 
T1 = EKW1, EPRW1, Pub_keyA1, EPRA1, Sig{EKW1, EPRW1} A1, 
Sign {Pub_keyA1} TTP, other details 
 
Where EKW1 is the public part of W1’s Endorsement Key, TTP is 
a trusted third party like VeriSign and ‘other_details’ denotes all 
other required and optional details like validity time period etc. As 
before, the two BSM shown in the diagram could either be a 
single physical entity or be implemented on separate hardware. 
 
A similar protocol is run between W1 (using T1 to prove its 
membership) and STS1 resulting in W1 obtaining Tg

`. 
 

4.2 Membership Revocation 
As pointed out earlier, membership revocation represents a 
significant challenge in a dynamic environment. Revoking W1’s 
membership of a group involves two separate steps. 
 
• Updating membership list - The STS maintains, for each group 

created in its domain, the list of WS instances that are members 
of the group. When (say) W1 leaves a group, its details are 
removed from the membership list and the updated list is 
published. This can be done without much complication by 
assigning a short expiry date for the membership list and getting 
STS to republish a signed and time-stamped version of the 
membership list, reflecting any additions and deletions to/from 
the list. This process serves mainly as an auditing mechanism to 
ensure and verify the accountability of STS. 

 
• Removing W1’s access to Tw1-g - When W1 leaves a group; it 

should no longer be able to send messages to the group. In 
practice this can be implemented by revoking W1’s access to the 
group token Tw1-g.  

 
Preventing W1 access to Tw1-g, including physically removing Tw1-

g from the secure storage associated with W1, may not be 
straightforward, depending on the threat model assumed. If the 
web services are trusted to adhere to their specified behaviour 
then removing access to Tw1-g can be achieved by introducing a 
management action to the management capabilities [5] of W1 that 
enables the TPM administrator or management agent to request, 
via the management interface of W1, the removal of (access to) 
Tw1-g.  
 
However, in many cases the threat model assumes that the web 
services are not trusted and hence are not expected to behave as 
specified when the group membership tokens need to be forcefully 
revoked. The solution we propose is to implement a scheme in 
which the group token is never given directly to W1, thus 
preventing its full control of Tw1-g. The next section examines our 
proposed architecture that implements such a system, by relying 
on hardware compliant with the trusted computing platform 
architecture [3]. 
 



4.3 Revised Control Model for Group 
Membership Tokens 

As explained earlier, in many cases it is not desirable to allow 
web service instances direct access its own group membership 
token. One possible solution which forms the basis of the 
architecture proposed in the paper is to introduce a new secure 
portioned sub-system that acts as the access handler and which 
controls the life-cycle of such security tokens. 
 
We call such an entity the Group Token Handler (GTH). 
Following the architecture from [4], the GTH can be 
represented as a triple (P, H, MC) where P is a dedicated 
partition, H is a handler, and MC is a dedicated manageability 
capability, i.e. a part of the manageability interface of the 
enforcement middleware associated with the corresponding 
service instance.  
 
The GTH-enabled system is implemented by extending the 
architecture defined in [4], as shown in the Figure 6. As before, 
the TPM and PEP VM are isolated into their own partitions, 
with each WS instance’s VM forming other partitions. In 
additions a VM partition is created for the GTH and its data. 
When the STS allows W1 membership to a group, the group 
token Tw1-g  and the private key corresponding to the group 
public key present in Tw1-g is sent to the GTH, instead of to W1. 
When W1 wishes to send a message to the group members, it 
sends the message (without the group token) to the PEP. The 
PEP then sends the message to the GTH partition. As long as 
W1 is recognized as a group member by STS1, any such request 
on behalf of W1 to insert Tw1-g and encrypt and sign the 
outgoing message will be honoured by GTH. 
 
The GTH partition is configured to accept requests by specific 
manageability clients, including the TPM administrator and the 
STS. An authorisation policy that each authority in the trust 
realm can use MC only for the tokens that it has provided can 

be used to impose restrictions on the working of these 
manageability clients. When either the TPM administrator A1 or 
the security token service STS1 wishes to revoke one of the 
existing group tokens, it requests the GTH to prohibit access to 
this token from any WS or that the token be destroyed. 
Similarly if a specific WS leaves a group, its access to the 
corresponding group token is denied by removing the token 
from the list of groups it is a member of. This is done using the 
corresponding manageability interface of the enforcement 
component (i.e. the MC of the PEP). On receiving this request, 
GTH updates the corresponding token list by making the 
requested token inaccessible or by destroying it.  
 
If dependencies exist between tokens, these should be reflected 
in the way the tokens are stored and also in the way their 
removal or denial of access to them is implemented. For 
example, according to [2], the validity of group tokens depends 
on the validity tokens identifying an entity within its original 
trust realm. Consequently the removal of identification token 
should imply the removal of all group tokens whereas the 
removal of a group token should not affect the validity and use 
of such an identification token. Removing or making a group 
token inaccessible isolates the WS from all group interactions 
since the group token has to be attached with every outgoing 
message in order to prove membership in the group [2]. At the 
same time, since the GTH would refuse the use of the group 
private key to decrypt subsequently received group messages, 
the confidentiality of the messages is maintained. 
 

4.4 Alternate Architectures 
The proposed architecture in Figure 6 can have several 
variations based on varying levels of entity isolation. Figure 6 
shows the GTH being shared between various WS instances on 
the same VHE. By further decomposition of the management-
related partitions, higher level of security and re-configurability 
can be achieved. Examples of these are illustrated below. 
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Figure 6: Modified partition architecture for WS instances 



Figure 7 shows a model with a separate GTH partition for each 
WS instance. This allows different WS instances to co-exist on the 
same host, whilst being used in different collaborations - 
controlled by different administrative entities, which can 
independently manage their memberships. 
 
Figure 8 shows a model where, in addition to separate GTH 
partition for each WS instance, there is a Policy VM for each WS 
instance as well. While still allowing for separate membership 
management per instance, this model also allows the authorities of 
collaboration management and security policy management to be 
granted to different administrative entities. So, for example, while 
a collaboration administrator can be an entity trusted and/or 
jointly appointed by all collaboration participants to manage this 
particular collaboration, security policy administrators may be 
entities from the organisational domain, responsible for updating 
security configuration of the WS instance to reflect the access 
policies of each participant. 

By increasing the amount of isolation between the components 
these alternate architectures improve on the security and integrity 
assurance provided by the system.  Since each partition can have 
its own TPM, data specific to the functional partition can be 
encrypted using the VM specific TPM keys. Each partition can 
also be given a separate management interface allowing for 
support of finer delegation of management responsibilities. 
 
However, the larger isolation comes at the cost of scalability and 
management overhead. The creation and maintenance of extra 
VMs to hosts the individual GTHs and Policy VMs would mean 
that the number of WS instances that can be supported per VHE 
would decrease. Also, a TPM administrator would need to 
maintain larger set of keys, and potentially to perform more 
frequent invocations. A decision on which of the architectures 
should be adopted in practise depends on the security assurance 
demanded by the WS component consumers.  
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Figure 7: Separation of GTH partition per WS instance 
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Figure 8: Further decomposition of security enforcement partitions: GTH and Policies per WS instance 



4.5 Revoking the STS 
So far we have considered the process of revoking the group 
membership of the WS when instructed by the STS. Even though 
the STS itself is protected by an isolated partition, a strong threat 
model has to assume that the STS can also be compromised and 
hence may in turn need to be revoked. In order to counter such a 
powerful attack, an additional architecture layer that uses a new 
entity called the STS Revoker (STSR) is proposed (Figure 9).  
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Figure 9: STS Revoker concept 

When a STS compromise is detected, the STSR informs the GTH 
that it should use a new STS’s service to check group 
membership. In order to do this, during the initialization phase of 
the GTH, the administrator also specifies the EPR of the STSR 
along with the EPR of the STS(s). When a compromised STS is 
detected, STSR (using out-of-band methods) informs the GTH to 
stop using the compromised STS and provides the GTH with the 
EPR of an alternate STS to use from then on. This procedure 
assumes that the STSR is more secure that the STS6. The overall 
STSR architecture is shown in Figure 9 above. 
 

5. RELATED WORK 
Research in secure group communication aims to provide group 
membership control, secure key distribution, and secure data 
transfer [19]. Typically, this is achieved by distributing the group 
key only to the participants (control of the group membership), 
and using that key for encryption of the traffic (secrecy of 
exchanged data). In addition, in a dynamic environment, where 
members can freely join and leave, integrity of the group is 
preserved by refreshing the group key, while ensuring that the key 
distribution is done in a secure and scaleable way. A number of 
schemes for key management and distribution exist [20], which 
can be mainly divided into centralised, decentralised, and 
distributed. While these have their distinct advantages and 
shortcomings, most of the approaches are concerned with design 
of secure group packet-level protocols.  
 
However, there are two important issues related to the 
authentication and access control which are developed to the 

                                                           
6 STSR can be a device that is not permanently “online”, 
but is switched-on only for the purpose of (re)configuration 
only, or for responding to an identified security threat.  

lesser extent, and are also more relevant to the work presented in 
this paper. Commonly, authentication provided with a key 
management is recognised as a group authentication, meaning that 
participating entities can authenticate each other as a group 
member. However, authentication on the level of an individual 
user is far more complex if relying on the group protocols only. 
For this, schemes that consider network location [21], third party 
–generated public-key certificates [22], or Diffie-Hellman 
agreement (see [18]) for distributed ad-hoc communities [23] 
have been considered. The second issue, of access control, is 
normally concerned with admission to a group, i.e. whether or not 
an entity is a valid member of a group [20]. This is provided 
through timely update and distribution of a group key. However, 
this does not provide any means of constraining actions of an 
entity once it is allocated to a group, or for defining more fine-
grained group policy other than inclusion/exclusion. Various 
authorisation frameworks and mechanisms have been proposed 
[1][24][25][26][27][28][29]. This is the area of active research, 
particularly when there is a requirement for group members to 
reside in different administrative domains. 
 
On the other hand, several recent research works have been 
investigating on how virtualization can be extended to support the 
‘on demand’ nature of web service hosting requirements. SODA 
[12] is one such architecture that virtualizes each service nodes by 
running it within individual VMs on the hosted machine. By 
designing their architecture in a Master-Agent setup they are able 
to create the needed services on demand, across several machines 
in the hosting farm. Up to date however, work in the area of 
virtualisation provides only basic process isolation and system 
security that is inherent in the virtualisation paradigm and does 
not extend the architecture to perform WS specific functionalities. 
 
In summary, we are not aware of any existing or similar work that 
tackles issues of hardware-based group-oriented security and 
membership management for the purpose of cross-domain web 
services interactions. 
 

6. CONCLUSION AND FUTURE WORK 
In this paper we propose a new Web Services architecture that 
eases the burden of policy configuration in establishing dynamic 
secure federated collaborations and supports fine-grained 
enforcement at the level of WS instance. Furthermore, we extend 
[2],[4] and [6] by introducing an architecture that facilitates the 
propagation and life-cycle management of group membership 
state and tokens by leveraging on the use of a virtualised trusted 
computing platform architecture in a federated environment. The 
architecture uses the concept of Group Token Handler to maintain 
and destroy the group tokens on behalf of the web service. 
Furthermore by using trusted hardware, the architecture allows 
secure generation and storage of tokens and keys proving 
membership in groups within and across the trust realms of a 
federated environment. 
 
Depending on which of the described alternative architectures is 
used, further work may be needed to analyse the very details of 
the interaction protocols and define the exact content of the 
associated messages. The performance overhead introduced by the 
GTH needs to be analysed further, in order to confirm that the 
GTH does not represent the bottleneck in the implementation, as it 
needs to mediate all group messages related to the web service 



instance. Finally, another aspect of our ongoing work is on the 
architectural extension, addressing the design of the  
 
Next stage in our work, covering the above aspects, is an 
experimental implementation of the proposed architecture in order 
to secure the interactions on the WS-based B2B Gateway 
described in [15]. 
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