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Abstract - This paper reports the study on the performance 
enhancements of two extensions to the standard TCP 
implementation - Selective Acknowledgement (SACK) and 
Header Checksum (HACK) - over satellite links that are 
characterized by high latency and high bit error rate. We also 
examine the effectiveness of TCP Trunk, an edge-to-edge 
aggregation and congestion control mechanism, over the satellite 
link. Our study on the effect of varying the TCP window size 
over long latency link for New Reno, SACK, HACK and TCP 
Trunk implementations show that increasing window size does 
improve the performance, but only up to a certain value of the 
window size, and a further increase actually reduces the 
performance. Other interesting observations from our 
experimental study are: SACK enabled TCP Trunk across the 
satellite link edge routers can improve the throughput 
regardless of the end host TCP implementation; disabling the 
link layer CRC and instead implementing the HACK extension 
to the TCP (and of course HACK+ SACK) can improve the 
throughput further. 
 

I. INTRODUCTION 
 

In the recent few years, there have been several 
experimental studies on the efficacy of using standard TCP/IP 
protocol suite over satellite channels. Allman and Kruse [1] 
present several references to those studies as well as the main 
results. There are several IETF standardized mechanisms [2] 
as well as a number of other possible TCP mitigations [3] that 
may allow TCP to better utilize the available bandwidth 
provided by networks containing satellite links. In this paper, 
we focus on analyzing the efficiency of three mechanisms, 
Selective Acknowledgment (SACK) [4], Header Checksum 
(HACK) [5] and TCP Trunk [6,7].  We conducted our 
experiments over two network test beds, one using link layer 
emulator and the other using a Geosynchronous Earth Orbit 
(GEO) satellite link. 
 

Rest of the paper is organized as follows. Section 2 gives a 
brief description of the various problems unique to satellite 
environment. Section 3 outlines some background 
information on the different extensions to TCP that we study 
in this paper. In Section 4, the experimental setup is 
presented. The results and discussions are presented in 
Section 5. Section 6 concludes the paper. 
 
 

II. PROBLEMS WITH TCP/IP OVER SATELLITE LINKS 
 

Satellite links have a number of characteristics that may 
degrade the performance of TCP over it. The important ones 
among them are discussed below. 

A. Long RTT 
Satellite links have an average RTT of around 500ms. TCP 

uses the slow start mechanism to probe the network at the 
start of a connection. Time spent in slow start stage is directly 
proportional to the round trip time (RTT) and for a satellite 
link, it means that TCP stays in slow start mode for a longer 
time than in the case of a small RTT link. This drastically 
decreases the throughput of short duration TCP connection. 
Furthermore, when packets are lost, TCP enters the 
congestion control phase, and due to higher RTT, remains in 
this phase for a longer time, thus reducing the throughput of 
both short and long duration TCP connections. 
 
B. Large Bandwidth-Delay Product 

Bandwidth-Delay product is a measure of the amount of 
data in flight on a link at any point of time. Because of the 
high RTT of the satellite, the bandwidth-delay product tends 
to be very large. In windowed protocols like TCP, the value 
of the bandwidth-delay product is very critical.  To fully 
utilize the link, the window size of the connection should be 
equal to the bandwidth-delay product.  
 

In TCP, without the window scaling option, the largest 
window size allowed is 64KB. For a GEO satellite the 
maximum throughput achievable is: 
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Thus, a TCP connection, which might be using a satellite 
link of 2Mbps bandwidth, ends up achieving a maximum 
throughput of just over 1Mbps. In addition, many TCP stack 
implementations use advertised window sizes much less than 
64KB by default. To remedy this, RFC 1323 [8] specifies that 
TCP may use a maximum window size of up to 230, by using 
the window scaling option.  
 
C. Transmission Errors 

One of the biggest drawbacks of TCP is that TCP cannot 
distinguish between packet loss due to link error and that due 
to link congestion. Any segment lost is always considered as 
caused by congestion and TCP performs congestion 
avoidance with the receipt of three duplicate ACKs or slow 
start in the case of timeout. As mentioned before, because of 
the long RTT value, once entered, TCP on satellite links will 
take a longer time to return to the throughput level that the 
connection was enjoying just before entering the congestion 
control phase. Thus errors on a satellite link have more 
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deleterious effect on the performance of TCP rather than over 
low latency links. 
 

III. BACKGROUND WORK 
 

New Reno is the present default TCP implementation in 
most systems. It, as the name suggests, is an improvement to 
Reno, wherein the need for the sender to wait for a retransmit 
timer when multiple packets are lost from a window is 
eliminated. However, even with the New Reno 
implementation, when multiple packets are lost from a 
window, TCP may end up either retransmitting packets that 
might have already been successfully received, or 
retransmitting at most one dropped packet per round-trip [9].  
In the remaining part of this section we provide a brief 
outline of the extensions and mechanisms of TCP, the 
effectiveness of which we study in this paper. 
 
A. TCP SACK 

To overcome the limitations of TCP New Reno, a selective 
acknowledgment (SACK) mechanism was defined in RFC 
2018 [4]. With TCP SACK, the data receiver can inform the 
sender about all the segments that have arrived successfully, 
allowing the sender to retransmit only the segments that have 
actually been lost. In [10], Floyd addressed various issues 
related to behavior and performance of TCP SACK.  In 
another paper [9], Floyd and Fall analyzed the performance 
of TCP SACK with respect to Tahoe and New Reno using 
simulations, and found that SACK was able to provide better 
performance. In [11], Allman et al. discuss the performance 
of TCP SACK over satellite links. Our experiments on TCP 
SACK extend these studies to investigate the joint impact of 
long latency, corruption, congestion, window size and file 
size on TCP performance. 
 
B. TCP Trunk 

TCP Trunks were first suggested and studied by Kung and 
Wang in [6]. A TCP Trunk is a TCP circuit between two edge 
routers that carries IP packets over the network. It is an 
aggregate traffic stream whose data packets are transported at 
a rate dynamically determined by TCP’s congestion control 
mechanism. In our experiments with TCP Trunk, we deploy a 
TCP Trunk between the two gateways across the satellite 
link.  
 
C. TCP HACK 

TCP HACK [5] is an extension proposed for the TCP 
protocol to improve its performance over lossy links. In 
HACK, by adding two more option fields to TCP (Header 
Checksum option and Header Checksum ACK option), a 
connection is able to recover uncorrupted header of TCP 
packets with corrupted data and determine that packet 
corruption and not congestion has taken place along the link. 
TCP can then respond accordingly and avoid going into 
congestion control phase. 
 
 

 
IV. EXPERIMENTAL SETUP 

 
To analyze the performance of SACK, HACK and TCP 

Trunk, we conducted a variety of experiments using both the 
link emulator as well as the GEO satellite link. We used the 
link emulator because of the limited testing time allowed with 
the satellite link and also because of the flexibility. We used 
Intel Pentium machines running Linux 2.2.14-5.0 kernel for 
our experiments. Iperf [12] was used to generate TCP and 
UDP traffic. Tcpdump [13] was used to observe the TCP 
packets and tcptrace [14] was used to analyze the output from 
tcpdump. The experimental testbed using the link emulator is 
show in Figure 1 and the testbed using the GEO satellite link 
is show in Figure 2. The error/delay box in Figure 1 was used 
to corrupt and delay packets in the network to simulate lossy 
and long latency environments, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. RESULTS 
 
A. SACK 
We compare the performance of TCP SACK under various 
conditions of corruption and congestion. The experiments 
were conducted using both the link emulator and the GEO 
satellite link. 
 
a. Link Emulator – No Corruption 

Our first set of experiments tested the performance of TCP 
New Reno and SACK over the long latency link in a no 
corruption environment. An RTT of 510 ms was introduced 
by the error/delay box to simulate the long latency of the 
satellite link. We sent files of different sizes (100KB, 1MB 
and 10MB) from Client 1 to Server (Figure 1). The TCP 
window size was also varied from 32KB to 1024KB. At the 
server, the goodput obtained was measured.  
 

Satellite Link 

Client 1 

Client 2 

Traffic Aggregator 

Trunking Gateway 

Trunking Gateway

Traffic Aggregator 

Server

Fig. 2. Experimental testbed 2 

Fig. 1. Experimental testbed 1

Client 1 
Server 

Error/Delay Box Router 

Client 2
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It can be seen from Figures 3 and 4 that when the window 
size is increased, the goodput generally increases, except for 
the case with 10MB file and window size of 1024KB.  The 
result is consistent with earlier published results and endorses 
the TCP window scaling option in RFC 1323 [8]. It is 
interesting to see that the goodput for 100KB and 1MB file 
transfers are smaller than that for the 10 MB file transfer for 
all window sizes. This is because in both the cases, there is 
not enough data to actually take advantage of the large TCP 
window size and fill the link.  
 

The performances of New Reno and SACK are comparable 
except for very large window size. The comparable 
performances of New Reno and SACK are expected because 
of no loss scenario. However, for a large window size of 
1024KB, for the 10MB file transfer (Figure 4), the goodput 
decreases in both cases, but more in the New Reno case. This 
can be explained as follows. For a link with RTT of 510 ms 
and bandwidth of 10Mbps, the bandwidth-delay product is 
652.8KB. When the window size is larger than this value 
(1024KB in this case), congestion sets in and the throughput 
falls. As SACK is able to handle dropped packets by using 
the selective ACK feature, it fares better compared to New 
Reno. Thus we see that blindly increasing window size to a 
very large value will actually adversely affect the throughput, 
even if SACK is used. 

 
b. Link Emulator – Corruption 

In the next set of experiments, we introduced packet errors 
into the link using the delay/error box. The packet corruption 
rate was set to 1% and the RTT remained 510ms. Note that 
1% packet error rate corresponds to around 0.9x10-6 bit error 
rate (BER), for a segment size of 1460 bytes. File transfers of 
1MB and 10MB were carried out with varying window sizes. 
Figure 5 shows the resulting throughputs obtained. 
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The above graphs show that SACK provides better 
performance compared to New Reno when link experiences 
corruption. As with the previous case of no corruption, the 
10MB file transfer goodput decreases when window size is 
increased beyond 652.8KB because of the presence of 
congestion in addition to corruption. SACK is able to handle 
this situation better and provides a better goodput. The 
percentage reduction in goodput from no corruption to 
corruption case is more with 10MB file transfer because of 
the ten times larger number of packets loss events and 
consequent reduction in the TCP congestion window during 
the transfer. 
 

We repeated the above experiment with packet corruption 
rates of 0.5% and 2%. Figure 6 summarizes the results 
observed for the 10MB file transfer. 
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SACK performs better than New Reno for all corruption 
levels. However, we see that the margin of improvement is 

Fig. 3. Goodput for 100KB file transfer for different  
window sizes - no corruption 

Fig. 4. Goodput for 1MB and 10MB file transfers for 
different window sizes - no corruption 

Fig. 5. Goodput for 1MB and 10 MB file  
transfers for different window sizes - 1% corruption 

Fig. 6. Goodput for a 10MB file transfer for different 
window sizes and corruption rates 
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greatest for lower corruption rates. As corruption rate 
increases, the difference in throughput between SACK and 
New Reno decreases, especially for very large window sizes. 
For the largest window size we used, 1024KB, the difference 
between the goodput (in bytes) for different corruption rates 
is as follows: 
 

 
 
 

We see that in the presence of congestion (1024KB 
window), when the corruption rate is more, the improvement 
that SACK provides decreases. This might be because of the 
fact that the option field limits SACK to informing the sender 
about the receipt of a maximum of 4 blocks of data (i.e., 3 or 
4 blocks of lost data). When both congestion and corruption 
are present, instances of more than 4 blocks of data getting 
lost increases. It might also be because of the fact that, due to 
high packet loss, the receiver receives no data packets and 
hence no ACKs are sent which can carry the SACK 
information back to the sender. In these cases, even SACK is 
not able to respond properly and times out more frequently. 
This causes a decrease in the goodput. 
 
c. Link Emulator – Congestion and Corruption 

In the experiments so far, we noticed onset of congestion 
when the window size was larger than the delay-bandwidth 
product. In the next experiment we introduced congestion due 
to non-responsive UDP flow. We used a setup where only 
TCP data was corrupted. The corruption rate was set to 0% 
(no corruption, only congestion) and 1%. The window size 
was fixed at 512KB so that we could take full advantage of a 
larger window without running the risk of creating additional 
link congestion. The file size used was 10MB. The results for 
1% corruption are shown in Figure 7. Similar behavior was 
observed for 0% corruption, but of course with higher 
goodput values. 
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In this congestion scenario, with both 0% and 1% packet 
corruption rates, SACK again gives a better goodput 
compared to New Reno when the combined effect of 
corruption and congestion is moderate. This is because, when 
the combined effect of corruption and congestion is high, 
SACK will not be able to recover fast enough and the 
throughput will decrease. Notice that when 10MBytes/s UDP 
was pumped into the network, TCP connection was killed, as 
expected, because the non-responsive UDP traffic was taking 
up the whole link bandwidth of 10Mbps. 
 
d. Satellite Link 

Here we discuss the performance of TCP New Reno and 
SACK using the satellite link in Figure 2. The satellite link 
has a bandwidth of 2Mbps and an RTT of 510ms. 1MB and 
10MB files were transferred from Client 1 to Server. Window 
size was varied from 64KB to 128KB and finally to 256KB. 
Each experiment was repeated 5 times and the average value 
was taken for the final analysis.  Table 2 presents the 
goodputs measured in KBytes/s. 

 
 1MB 

New 
Reno 

1MB 
SACK 

10MB 
New Reno 

10MB 
SACK 

64KB 13 14 16.5 17.6 
128KB 13.75 15 16.5 18.5 
256KB 12.5 13 15.75 17.75 

 
 
 

The results are similar to that obtained using the link 
emulator. The goodput increases when the window size is 
increased, as long as the window size is kept less than the 
bandwidth-delay product (2Mbps*510ms =130.56KB). When 
the window size is set to 256KB, we notice that the 
throughput decreases for both New Reno and SACK. This is 
consistent with the results obtained earlier while using the 
link emulator. The results also show that SACK performs 
better than New Reno for both the file sizes as well as for all 
the window sizes used. This too is consistent with the results 
of the previous experiments. 
 
B. TCP HACK 

Next we analyze the comparative performance of TCP 
HACK [5] and SACK, for the satellite link latency case. The 
link emulator was used for the experiments. We modified the 
device drivers of the Ethernet cards to stop them from 
discarding packets that failed the packet CRC checks. As a 
result, corrupted packets arriving at the network cards were 
passed up to the TCP/IP stack without being discarded. We 
could not perform the experiments with the real satellite link 
due to the inability to disable the link layer CRC. 
 
a. Burst Error 

First we compare the performance of SACK and HACK in 
bursty error (i.e., a few contiguous packets – as many as the 
burst length – in error) conditions with the window size set 

Corruption SACK New Reno Difference 

0.5 % 37055 37653 598 

1.0 % 29509 29798 289 

2.0 % 18463 18684 221 

Table 1. Goodput for 10MB file transfer using 
1024KB window 

Fig. 7.  Goodput for 10MB file transfer – 
1% corruption and background UDP traffic 

Table 2. Goodput for 1MB and 10MB file transfers 
for varying window size – satellite link 
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Fig 8. Throughput for 2% burst error for various burst 
lengths 
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high enough not to be the limiting factor. Figures 8 and 9 
show the results of the various TCP schemes under 2% and 
5% burst error probability. 
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As expected, HACK performs better than SACK and 

HACK plus SACK performs still better. The reasons are the 
same as explained earlier. 
 
C. TCP Trunk 
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Fig 11. Throughput for 2% burst error for various 
burst lengths (window size of 64KB) 
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Fig 10. Throughput for 2% burst error for various 
burst lengths (window size of 16KB) 
Fig 9. Throughput for 5% burst error for various 
burst lengths 
e can see from the graphs that HACK performs 
tantially better than SACK.  The reason is that when TCP 
 too many packets in a row (within the same window), 
K is not able to respond properly. HACK performs better 
use it can retrieve the TCP header of the corrupted 
ets and use those headers to generate ACKs and thus 
 the pipe flowing. We can also see that HACK is able to 
rm better when SACK is also activated. This is because 
K is able to make use of the out of order retransmission 
ACK, when it gets the ACKs. These out of order 
tions are created when HACK is not able to retrieve the 
ers of all the packets that have been corrupted. HACK 
s ACKs for those packets whose headers it is able to 
ve. This creates a gap in the receiving window. SACK 
uses its mechanism to retransmit selectively the packets 
e header HACK is not able to retrieve. 

Effect of window size 
e effect of window size on the performance of HACK is 
idered next and we compare it with the performance of 
K. Figure 10 shows the throughput of the TCP 
ections for an error probability of 2% and window size 
6KB, while Figure 11 shows that for a 64KB window 
 

We used testbed 2  (Figure 2) for evaluating the 
effectiveness of TCP Trunk over satellite link. The traffic 
aggregator and the Trunk gateway can also be integrated into 
a single edge device. We concentrated on 10MB file transfers 
and did experiments first with New Reno TCP Trunk and 
then with SACK enabled TCP Trunk. For this SACK enabled 
TCP Trunk, we also varied the window size for the TCP 
connection between the Trunk gateways from 64KB to 
128KB and finally to 256KB. Figure 12 shows the total 
throughput for transfers from both the sources. 
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Fig. 12: Throughput observed for a 10MB file transfer for 
different options
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We observe that TCP Trunk with New Reno gives a 
goodput less than what we obtain without the Trunk. The 
primary reason might be the presence of two separate 
congestion control mechanisms, one between the end hosts 
and the other between the Trunk gateways. That is, when 
packets are lost, the Trunk times out. However, if Trunk 
times out it is very likely that the end-to-end TCP connection 
also times out. This is because the Trunk is over a long 
latency link (i.e., satellite) and the client to the Trunk is a 
short latency link. Thus retransmissions may happen twice, 
from the end host as well as from the Trunk gateway. This 
will decrease the throughput. This assertion is given 
credibility when the actual amount of data transferred across 
the link is analyzed. Table 3 shows the actual amount of data 
transferred in both cases.  “Excess” is the difference in the 
amount of data transferred across the link when Trunk is used 
and when it is not used, expressed as a percentage of the data 
sent without the Trunk. 
 

File size 5MB 10MB 
Data transferred without trunk 

(bytes) 5046336 10114232 

Data transferred with trunk 
(bytes) 5401835 11675170 

Excess 7.04% 15.43% 
 
 

Another reason for the poor performance of Trunk with 
New Reno is that the Trunk is implemented at the user-space 
using libpcap [15]. The process of snooping up of packets 
from kernel space to user space and then putting it back to the 
kernel space may be introducing enough delay to make a 
significant impact on the throughput. 
 

However, when SACK was enabled for the Trunk TCP, the 
throughput observed was larger than when the Trunk was not 
deployed. This is because SACK can use the ACKs to trigger 
out of sequence retransmissions, without waiting for timeout. 
The Trunk alone will do these retransmissions and the end 
host will not retransmit because timeout has not happened 
yet.  When the window size for the TCP Trunk was 
increased, the throughput was also increased. 
 

We also see that the throughput for a 128KB SACK 
enabled Trunk implementation is higher than that of the 
256KB SACK enabled Trunk. This is because when we 
increase the window size beyond the bandwidth-delay 
product (2Mbps x 510ms = 130.56KB), the connection may 
try to send more data than what the link can hold. When this 
happens, packets are dropped and throughput decreases. This 
is what we see in Figure 12. When the window size is 
increased but kept below the bandwidth-delay product value, 
we see an increase in the throughput, but when the window 
size is set to 256KB, which is more than the bandwidth-delay 
product, the performance degrades, yielding smaller 
throughput for the TCP connection. 
 
 

VI. CONCLUSION 
 

In this paper, we showed that TCP SACK does perform 
better than New Reno in long latency error and congestion 
prone environment. However, there is a limit to which SACK 
can be helpful. We showed that SACK has no effect when the 
level of corruption or congestion increases. Our experiments 
prove that HACK performs better than SACK in similar 
conditions and that HACK plus SACK compliment each 
other and perform better than each individually. We showed 
that TCP Trunk is not always good over a long latency link. 
Trunk implementation with New Reno gave lesser throughput 
than without the Trunk. However SACK enabled Trunk 
performed better compared to the scenario without Trunk. 
The increase of window size does increase the overall 
throughput of a connection. However, when the window size 
is set more than the bandwidth-delay product, lesser 
throughput is experienced, for both New Reno and SACK. 
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