

Effectiveness of TCP SACK, TCP HACK and TCP Trunk over Satellite Links

Lillykutty Jacob, K.N. Srijith, Huang Duo, A.L. Ananda
Centre for Internet Research

School of Computing
National University of Singapore

3 Science Drive 2, Singapore 117543

Abstract - This paper reports the study on the performance
enhancements of two extensions to the standard TCP
implementation - Selective Acknowledgement (SACK) and
Header Checksum (HACK) - over satellite links that are
characterized by high latency and high bit error rate. We also
examine the effectiveness of TCP Trunk, an edge-to-edge
aggregation and congestion control mechanism, over the satellite
link. Our study on the effect of varying the TCP window size
over long latency link for New Reno, SACK, HACK and TCP
Trunk implementations show that increasing window size does
improve the performance, but only up to a certain value of the
window size, and a further increase actually reduces the
performance. Other interesting observations from our
experimental study are: SACK enabled TCP Trunk across the
satellite link edge routers can improve the throughput
regardless of the end host TCP implementation; disabling the
link layer CRC and instead implementing the HACK extension
to the TCP (and of course HACK+ SACK) can improve the
throughput further.

I. INTRODUCTION

In the recent few years, there have been several
experimental studies on the efficacy of using standard TCP/IP
protocol suite over satellite channels. Allman and Kruse [1]
present several references to those studies as well as the main
results. There are several IETF standardized mechanisms [2]
as well as a number of other possible TCP mitigations [3] that
may allow TCP to better utilize the available bandwidth
provided by networks containing satellite links. In this paper,
we focus on analyzing the efficiency of three mechanisms,
Selective Acknowledgment (SACK) [4], Header Checksum
(HACK) [5] and TCP Trunk [6,7]. We conducted our
experiments over two network test beds, one using link layer
emulator and the other using a Geosynchronous Earth Orbit
(GEO) satellite link.

Rest of the paper is organized as follows. Section 2 gives a
brief description of the various problems unique to satellite
environment. Section 3 outlines some background
information on the different extensions to TCP that we study
in this paper. In Section 4, the experimental setup is
presented. The results and discussions are presented in
Section 5. Section 6 concludes the paper.

II. PROBLEMS WITH TCP/IP OVER SATELLITE LINKS

Satellite links have a number of characteristics that may
degrade the performance of TCP over it. The important ones
among them are discussed below.

A. Long RTT
Satellite links have an average RTT of around 500ms. TCP

uses the slow start mechanism to probe the network at the
start of a connection. Time spent in slow start stage is directly
proportional to the round trip time (RTT) and for a satellite
link, it means that TCP stays in slow start mode for a longer
time than in the case of a small RTT link. This drastically
decreases the throughput of short duration TCP connection.
Furthermore, when packets are lost, TCP enters the
congestion control phase, and due to higher RTT, remains in
this phase for a longer time, thus reducing the throughput of
both short and long duration TCP connections.

B. Large Bandwidth-Delay Product

Bandwidth-Delay product is a measure of the amount of
data in flight on a link at any point of time. Because of the
high RTT of the satellite, the bandwidth-delay product tends
to be very large. In windowed protocols like TCP, the value
of the bandwidth-delay product is very critical. To fully
utilize the link, the window size of the connection should be
equal to the bandwidth-delay product.

In TCP, without the window scaling option, the largest
window size allowed is 64KB. For a GEO satellite the
maximum throughput achievable is:

Kbps
ms

KB
timetripround

windowadvertisedthroughput satellite

1024
500
64

)max(

≈

≈=

Thus, a TCP connection, which might be using a satellite
link of 2Mbps bandwidth, ends up achieving a maximum
throughput of just over 1Mbps. In addition, many TCP stack
implementations use advertised window sizes much less than
64KB by default. To remedy this, RFC 1323 [8] specifies that
TCP may use a maximum window size of up to 230, by using
the window scaling option.

C. Transmission Errors

One of the biggest drawbacks of TCP is that TCP cannot
distinguish between packet loss due to link error and that due
to link congestion. Any segment lost is always considered as
caused by congestion and TCP performs congestion
avoidance with the receipt of three duplicate ACKs or slow
start in the case of timeout. As mentioned before, because of
the long RTT value, once entered, TCP on satellite links will
take a longer time to return to the throughput level that the
connection was enjoying just before entering the congestion
control phase. Thus errors on a satellite link have more

0-7803-7400-2/02/$17.00 (C) 2002 IEEE

deleterious effect on the performance of TCP rather than over
low latency links.

III. BACKGROUND WORK

New Reno is the present default TCP implementation in
most systems. It, as the name suggests, is an improvement to
Reno, wherein the need for the sender to wait for a retransmit
timer when multiple packets are lost from a window is
eliminated. However, even with the New Reno
implementation, when multiple packets are lost from a
window, TCP may end up either retransmitting packets that
might have already been successfully received, or
retransmitting at most one dropped packet per round-trip [9].
In the remaining part of this section we provide a brief
outline of the extensions and mechanisms of TCP, the
effectiveness of which we study in this paper.

A. TCP SACK

To overcome the limitations of TCP New Reno, a selective
acknowledgment (SACK) mechanism was defined in RFC
2018 [4]. With TCP SACK, the data receiver can inform the
sender about all the segments that have arrived successfully,
allowing the sender to retransmit only the segments that have
actually been lost. In [10], Floyd addressed various issues
related to behavior and performance of TCP SACK. In
another paper [9], Floyd and Fall analyzed the performance
of TCP SACK with respect to Tahoe and New Reno using
simulations, and found that SACK was able to provide better
performance. In [11], Allman et al. discuss the performance
of TCP SACK over satellite links. Our experiments on TCP
SACK extend these studies to investigate the joint impact of
long latency, corruption, congestion, window size and file
size on TCP performance.

B. TCP Trunk

TCP Trunks were first suggested and studied by Kung and
Wang in [6]. A TCP Trunk is a TCP circuit between two edge
routers that carries IP packets over the network. It is an
aggregate traffic stream whose data packets are transported at
a rate dynamically determined by TCP’s congestion control
mechanism. In our experiments with TCP Trunk, we deploy a
TCP Trunk between the two gateways across the satellite
link.

C. TCP HACK

TCP HACK [5] is an extension proposed for the TCP
protocol to improve its performance over lossy links. In
HACK, by adding two more option fields to TCP (Header
Checksum option and Header Checksum ACK option), a
connection is able to recover uncorrupted header of TCP
packets with corrupted data and determine that packet
corruption and not congestion has taken place along the link.
TCP can then respond accordingly and avoid going into
congestion control phase.

IV. EXPERIMENTAL SETUP

To analyze the performance of SACK, HACK and TCP

Trunk, we conducted a variety of experiments using both the
link emulator as well as the GEO satellite link. We used the
link emulator because of the limited testing time allowed with
the satellite link and also because of the flexibility. We used
Intel Pentium machines running Linux 2.2.14-5.0 kernel for
our experiments. Iperf [12] was used to generate TCP and
UDP traffic. Tcpdump [13] was used to observe the TCP
packets and tcptrace [14] was used to analyze the output from
tcpdump. The experimental testbed using the link emulator is
show in Figure 1 and the testbed using the GEO satellite link
is show in Figure 2. The error/delay box in Figure 1 was used
to corrupt and delay packets in the network to simulate lossy
and long latency environments, respectively.

V. RESULTS

A. SACK
We compare the performance of TCP SACK under various
conditions of corruption and congestion. The experiments
were conducted using both the link emulator and the GEO
satellite link.

a. Link Emulator – No Corruption

Our first set of experiments tested the performance of TCP
New Reno and SACK over the long latency link in a no
corruption environment. An RTT of 510 ms was introduced
by the error/delay box to simulate the long latency of the
satellite link. We sent files of different sizes (100KB, 1MB
and 10MB) from Client 1 to Server (Figure 1). The TCP
window size was also varied from 32KB to 1024KB. At the
server, the goodput obtained was measured.

Satellite Link

Client 1

Client 2

Traffic Aggregator

Trunking Gateway

Trunking Gateway

Traffic Aggregator

Server

Fig. 2. Experimental testbed 2

Fig. 1. Experimental testbed 1

Client 1
Server

Error/Delay Box Router

Client 2

0-7803-7400-2/02/$17.00 (C) 2002 IEEE

26.3

26.35

26.4

26.45

26.5

26.55

26.6

32 64 128 512 1024

Window size (KB)

G
oo

dp
ut

 (K
B

yt
es

/s
)

new reno sack

50

80

110

140

170

200

230

260

290

32 64 128 512 1024

Wi ndow s i ze (KB)

G
oo

dp
ut

 (K
B

yt
es

/s
)

new reno - 10M B

sack - 10M B

new reno - 1M B

sack - 1M B

It can be seen from Figures 3 and 4 that when the window
size is increased, the goodput generally increases, except for
the case with 10MB file and window size of 1024KB. The
result is consistent with earlier published results and endorses
the TCP window scaling option in RFC 1323 [8]. It is
interesting to see that the goodput for 100KB and 1MB file
transfers are smaller than that for the 10 MB file transfer for
all window sizes. This is because in both the cases, there is
not enough data to actually take advantage of the large TCP
window size and fill the link.

The performances of New Reno and SACK are comparable
except for very large window size. The comparable
performances of New Reno and SACK are expected because
of no loss scenario. However, for a large window size of
1024KB, for the 10MB file transfer (Figure 4), the goodput
decreases in both cases, but more in the New Reno case. This
can be explained as follows. For a link with RTT of 510 ms
and bandwidth of 10Mbps, the bandwidth-delay product is
652.8KB. When the window size is larger than this value
(1024KB in this case), congestion sets in and the throughput
falls. As SACK is able to handle dropped packets by using
the selective ACK feature, it fares better compared to New
Reno. Thus we see that blindly increasing window size to a
very large value will actually adversely affect the throughput,
even if SACK is used.

b. Link Emulator – Corruption

In the next set of experiments, we introduced packet errors
into the link using the delay/error box. The packet corruption
rate was set to 1% and the RTT remained 510ms. Note that
1% packet error rate corresponds to around 0.9x10-6 bit error
rate (BER), for a segment size of 1460 bytes. File transfers of
1MB and 10MB were carried out with varying window sizes.
Figure 5 shows the resulting throughputs obtained.

24

25

26

27

28

29

30

31

32

32 64 128 512 1024

Window size (KB)
G

oo
dp

ut
 (K

B
yt

es
/s

)

new reno - 1M B

sack - 1M B

new reno - 10M B

sack - 10M B

The above graphs show that SACK provides better
performance compared to New Reno when link experiences
corruption. As with the previous case of no corruption, the
10MB file transfer goodput decreases when window size is
increased beyond 652.8KB because of the presence of
congestion in addition to corruption. SACK is able to handle
this situation better and provides a better goodput. The
percentage reduction in goodput from no corruption to
corruption case is more with 10MB file transfer because of
the ten times larger number of packets loss events and
consequent reduction in the TCP congestion window during
the transfer.

We repeated the above experiment with packet corruption
rates of 0.5% and 2%. Figure 6 summarizes the results
observed for the 10MB file transfer.

17

22

27

32

37

42

32 64 128 512 1024

Window size (KB)

G
oo

dp
ut

 (K
B

yt
es

/s
)

new reno - 2%

sack - 2%

new reno - 1%

sack - 1%

new reno - 0.5%

sack - 0.5%

SACK performs better than New Reno for all corruption
levels. However, we see that the margin of improvement is

Fig. 3. Goodput for 100KB file transfer for different
window sizes - no corruption

Fig. 4. Goodput for 1MB and 10MB file transfers for
different window sizes - no corruption

Fig. 5. Goodput for 1MB and 10 MB file
transfers for different window sizes - 1% corruption

Fig. 6. Goodput for a 10MB file transfer for different
window sizes and corruption rates

0-7803-7400-2/02/$17.00 (C) 2002 IEEE

greatest for lower corruption rates. As corruption rate
increases, the difference in throughput between SACK and
New Reno decreases, especially for very large window sizes.
For the largest window size we used, 1024KB, the difference
between the goodput (in bytes) for different corruption rates
is as follows:

We see that in the presence of congestion (1024KB
window), when the corruption rate is more, the improvement
that SACK provides decreases. This might be because of the
fact that the option field limits SACK to informing the sender
about the receipt of a maximum of 4 blocks of data (i.e., 3 or
4 blocks of lost data). When both congestion and corruption
are present, instances of more than 4 blocks of data getting
lost increases. It might also be because of the fact that, due to
high packet loss, the receiver receives no data packets and
hence no ACKs are sent which can carry the SACK
information back to the sender. In these cases, even SACK is
not able to respond properly and times out more frequently.
This causes a decrease in the goodput.

c. Link Emulator – Congestion and Corruption

In the experiments so far, we noticed onset of congestion
when the window size was larger than the delay-bandwidth
product. In the next experiment we introduced congestion due
to non-responsive UDP flow. We used a setup where only
TCP data was corrupted. The corruption rate was set to 0%
(no corruption, only congestion) and 1%. The window size
was fixed at 512KB so that we could take full advantage of a
larger window without running the risk of creating additional
link congestion. The file size used was 10MB. The results for
1% corruption are shown in Figure 7. Similar behavior was
observed for 0% corruption, but of course with higher
goodput values.

0

5

10

15

20

25

30

35

40

1 2 4 6 8 9 10
UDP Traf f ic (M bytes/s)

G
oo

dp
ut

 (K
B

yt
es

/s
)

new reno 1% corrupt ion

sack - 1% corruption

In this congestion scenario, with both 0% and 1% packet
corruption rates, SACK again gives a better goodput
compared to New Reno when the combined effect of
corruption and congestion is moderate. This is because, when
the combined effect of corruption and congestion is high,
SACK will not be able to recover fast enough and the
throughput will decrease. Notice that when 10MBytes/s UDP
was pumped into the network, TCP connection was killed, as
expected, because the non-responsive UDP traffic was taking
up the whole link bandwidth of 10Mbps.

d. Satellite Link

Here we discuss the performance of TCP New Reno and
SACK using the satellite link in Figure 2. The satellite link
has a bandwidth of 2Mbps and an RTT of 510ms. 1MB and
10MB files were transferred from Client 1 to Server. Window
size was varied from 64KB to 128KB and finally to 256KB.
Each experiment was repeated 5 times and the average value
was taken for the final analysis. Table 2 presents the
goodputs measured in KBytes/s.

 1MB

New
Reno

1MB
SACK

10MB
New Reno

10MB
SACK

64KB 13 14 16.5 17.6
128KB 13.75 15 16.5 18.5
256KB 12.5 13 15.75 17.75

The results are similar to that obtained using the link
emulator. The goodput increases when the window size is
increased, as long as the window size is kept less than the
bandwidth-delay product (2Mbps*510ms =130.56KB). When
the window size is set to 256KB, we notice that the
throughput decreases for both New Reno and SACK. This is
consistent with the results obtained earlier while using the
link emulator. The results also show that SACK performs
better than New Reno for both the file sizes as well as for all
the window sizes used. This too is consistent with the results
of the previous experiments.

B. TCP HACK

Next we analyze the comparative performance of TCP
HACK [5] and SACK, for the satellite link latency case. The
link emulator was used for the experiments. We modified the
device drivers of the Ethernet cards to stop them from
discarding packets that failed the packet CRC checks. As a
result, corrupted packets arriving at the network cards were
passed up to the TCP/IP stack without being discarded. We
could not perform the experiments with the real satellite link
due to the inability to disable the link layer CRC.

a. Burst Error

First we compare the performance of SACK and HACK in
bursty error (i.e., a few contiguous packets – as many as the
burst length – in error) conditions with the window size set

Corruption SACK New Reno Difference

0.5 % 37055 37653 598

1.0 % 29509 29798 289

2.0 % 18463 18684 221

Table 1. Goodput for 10MB file transfer using
1024KB window

Fig. 7. Goodput for 10MB file transfer –
1% corruption and background UDP traffic

Table 2. Goodput for 1MB and 10MB file transfers
for varying window size – satellite link

0-7803-7400-2/02/$17.00 (C) 2002 IEEE

Fig 8. Throughput for 2% burst error for various burst
lengths

12.988

20.0838 19.7595

15.5958

3.5406

16.436

19.9486

0.5402

4.6428

0

5

10

15

20

25

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

high enough not to be the limiting factor. Figures 8 and 9
show the results of the various TCP schemes under 2% and
5% burst error probability.

W
subs
loses
SAC
beca
pack
keep
perfo
HAC
of S
situa
head
send
retrie
then
whos

b.

Th
cons
SAC
conn
of 1
size.

As expected, HACK performs better than SACK and

HACK plus SACK performs still better. The reasons are the
same as explained earlier.

C. TCP Trunk

11.0162
11.6934

8.531

5.9582
7.6964

1.4022

0.21120.7454

8.5608

0

2

4

6

8

10

12

2 5 10
Length of Burst Error (packets)

Th
ro

ug
hp

ut
 (K

B
/s

)

hack+sack
hack
sack

Fig 11. Throughput for 2% burst error for various
burst lengths (window size of 64KB)

13 .701
10 .812

3 .74 6

18 .775

21.08 0

17.858

13 .732

2 .365
0 .4890

5

10

15

20

25

1 5 10
Leng th o f Burs t Erro r (packets)

hack+sack

hack

sack

10 .705

4 .6 56

14 .32 64

12 .04513 .7424

12 .393

6 .275

0 .2 67

15.230

0
2

4
6

8
10

12
14

16
18

1 5 10
Leng th o f Burst Erro r (packets)

hack+sack

hack

sack

Fig 10. Throughput for 2% burst error for various
burst lengths (window size of 16KB)
Fig 9. Throughput for 5% burst error for various
burst lengths
e can see from the graphs that HACK performs
tantially better than SACK. The reason is that when TCP
 too many packets in a row (within the same window),
K is not able to respond properly. HACK performs better
use it can retrieve the TCP header of the corrupted
ets and use those headers to generate ACKs and thus
 the pipe flowing. We can also see that HACK is able to
rm better when SACK is also activated. This is because
K is able to make use of the out of order retransmission
ACK, when it gets the ACKs. These out of order
tions are created when HACK is not able to retrieve the
ers of all the packets that have been corrupted. HACK
s ACKs for those packets whose headers it is able to
ve. This creates a gap in the receiving window. SACK
uses its mechanism to retransmit selectively the packets
e header HACK is not able to retrieve.

Effect of window size
e effect of window size on the performance of HACK is
idered next and we compare it with the performance of
K. Figure 10 shows the throughput of the TCP
ections for an error probability of 2% and window size
6KB, while Figure 11 shows that for a 64KB window

We used testbed 2 (Figure 2) for evaluating the
effectiveness of TCP Trunk over satellite link. The traffic
aggregator and the Trunk gateway can also be integrated into
a single edge device. We concentrated on 10MB file transfers
and did experiments first with New Reno TCP Trunk and
then with SACK enabled TCP Trunk. For this SACK enabled
TCP Trunk, we also varied the window size for the TCP
connection between the Trunk gateways from 64KB to
128KB and finally to 256KB. Figure 12 shows the total
throughput for transfers from both the sources.

0 10 20 30
Goodput (KBytes/s)

t runk(sack, 256KB)
trunk(sack, 128KB)
trunk(sack, 64KB)
trunk(new reno)
no trunk

0-7803-7400-2/02/$1

Fig. 12: Throughput observed for a 10MB file transfer for
different options
7.00 (C) 2002 IEEE

We observe that TCP Trunk with New Reno gives a
goodput less than what we obtain without the Trunk. The
primary reason might be the presence of two separate
congestion control mechanisms, one between the end hosts
and the other between the Trunk gateways. That is, when
packets are lost, the Trunk times out. However, if Trunk
times out it is very likely that the end-to-end TCP connection
also times out. This is because the Trunk is over a long
latency link (i.e., satellite) and the client to the Trunk is a
short latency link. Thus retransmissions may happen twice,
from the end host as well as from the Trunk gateway. This
will decrease the throughput. This assertion is given
credibility when the actual amount of data transferred across
the link is analyzed. Table 3 shows the actual amount of data
transferred in both cases. “Excess” is the difference in the
amount of data transferred across the link when Trunk is used
and when it is not used, expressed as a percentage of the data
sent without the Trunk.

File size 5MB 10MB
Data transferred without trunk

(bytes) 5046336 10114232

Data transferred with trunk
(bytes) 5401835 11675170

Excess 7.04% 15.43%

Another reason for the poor performance of Trunk with
New Reno is that the Trunk is implemented at the user-space
using libpcap [15]. The process of snooping up of packets
from kernel space to user space and then putting it back to the
kernel space may be introducing enough delay to make a
significant impact on the throughput.

However, when SACK was enabled for the Trunk TCP, the
throughput observed was larger than when the Trunk was not
deployed. This is because SACK can use the ACKs to trigger
out of sequence retransmissions, without waiting for timeout.
The Trunk alone will do these retransmissions and the end
host will not retransmit because timeout has not happened
yet. When the window size for the TCP Trunk was
increased, the throughput was also increased.

We also see that the throughput for a 128KB SACK
enabled Trunk implementation is higher than that of the
256KB SACK enabled Trunk. This is because when we
increase the window size beyond the bandwidth-delay
product (2Mbps x 510ms = 130.56KB), the connection may
try to send more data than what the link can hold. When this
happens, packets are dropped and throughput decreases. This
is what we see in Figure 12. When the window size is
increased but kept below the bandwidth-delay product value,
we see an increase in the throughput, but when the window
size is set to 256KB, which is more than the bandwidth-delay
product, the performance degrades, yielding smaller
throughput for the TCP connection.

VI. CONCLUSION

In this paper, we showed that TCP SACK does perform
better than New Reno in long latency error and congestion
prone environment. However, there is a limit to which SACK
can be helpful. We showed that SACK has no effect when the
level of corruption or congestion increases. Our experiments
prove that HACK performs better than SACK in similar
conditions and that HACK plus SACK compliment each
other and perform better than each individually. We showed
that TCP Trunk is not always good over a long latency link.
Trunk implementation with New Reno gave lesser throughput
than without the Trunk. However SACK enabled Trunk
performed better compared to the scenario without Trunk.
The increase of window size does increase the overall
throughput of a connection. However, when the window size
is set more than the bandwidth-delay product, lesser
throughput is experienced, for both New Reno and SACK.

ACKNOWLEDGMENT

We would like to thank Mr. Leong Kit Hoong and his team at
Satellite-Internet Competency Unit of Temasek Engineering School,
Temasek Polytechnic, Singapore, for the satellite time they provided
us.

REFERENCE

[1] M. Allman, H. Kruse, “A History of the Improvement of Internet

Protocol Over Satellites Using ACTS”, Proceedings of ACTS
Conference 2000.

[2] M. Allman, D. Glover, NASA Lewis, L. Sanchez, “Enhancing TCP
Over Satellite Channels using Standard Mechanisms”, RFC 2488,
IETF, 1999.

[3] M. Allman et.al., “Ongoing TCP Research Related to Satellites”, RFC
2760, IETF, 2000.

[4] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP selective
acknowledgment and options”, RFC 2018, IETF, 1996.

[5] R.K. Balan, B.P. Lee, K.R.R. Kumar, L. Jacob, W.K.G. Seah, A.L.
Ananda, “TCP HACK: TCP Header Checksum Option to Improve
Performance over Lossy Links”, Proceedings of IEEE INFOCOMM
2001, vol. 1, pp. 309—318.

[6] H.T. Kung, S.Y. Wang, “TCP Trunk: Design, Implementation and
Performance”, Proceedings of ICNP, 1999.

[7] B.P. Lee, R.K. Balan, L. Jacob, W.K.G. Seah, A.L. Ananda, “TCP
Tunnels: Avoiding Congestion Collapse”, Proceedings of LCN 2000,
pp. 408-417.

[8] Jacobson, R. Barden, D. Borman, “TCP Extensions for High
Performance”, RFC 1323, IETF, 1992.

[9] K. Fall, S. Floyd, “Simulation-based Comparison of Tahoe, Reno and
SACK TCP”, Computer Communications Review, vol. 26, pp. 5—21,
1996.

[10] S. Floyd, “Issues of tcp with sack”, Technical Report, LBL Networking
Group, 1996.

[11] M. Allman, C. Hayes, H. Kruse, S. Ostermann, “TCP Performance over
Satellite Links”, 5th Int’l. Conference on Telecommunication Systems,
1997.

[12] Distributed Application Support Team, “Iperf”,
http://dast.nlanr.net/Projects/Iperf

[13] Joseph Shaw, “Tcpdump”, http://www.tcpdump.org
[14] S. Ostermann, “Tcptrace” http://www.tcptrace.org
[15] Joseph Shaw, “Libpcap”, http://www.tcpdump.org

Table 3: Total data transferred across the link

0-7803-7400-2/02/$17.00 (C) 2002 IEEE

	Long RTT
	Large Bandwidth-Delay Product
	Transmission Errors
	TCP SACK
	TCP Trunk
	TCP HACK
	SACK
	TCP HACK
	TCP Trunk
	ICC 2002
	Return to Main Menu

